Skip to main content
Log in

Elastostatic Green's function for advanced materials subject to surface loading

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper gives a brief review of the Green's function method for solution of the general three-dimensional Boussinesq problem for advanced materials that are highly anisotropic. The Boussinesq problem refers to calculation of stress and/or strain fields in semi-infinite solids, subject to surface loading by solving the equations of elastostatic equilibrium. Analytical and semi-analytical expressions are derived for the elastostatic Green's functions based upon the delta-function representation developed earlier. The Green's function provides a computationally efficient method for solving the anisotropic Boussinesq problem. The Green's function should be useful for modeling physical systems of topical interest such as nanostructures in semiconductors, interpretation of nanoindentation measurements, and application to the boundary-element method of stress analysis of advanced materials. Numerical results for displacement and stress fields are presented for carbon-fiber composites having general orthotropic, tetrahedral, and hexagonal symmetries, and single-crystal silicon having cubic symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann and N.N. Ledentsov, Quantum Dot Heterostructures. New York: John Wiley (1999) 328pp.

    Google Scholar 

  2. M. Hebbache and M. Zemzemi, Nanoindentation of silicon and structural transformation: Three-dimensional contact theory. Phys. Rev. B 67 (2003) article number 233302.

    Google Scholar 

  3. T.A. Cruse, Boundary-element Analysis in Computational Fracture Mechanics. Dordrecht: Kluwer Academic Publishers (1988) 162pp.

    Google Scholar 

  4. A.G. Every and K.Y. Kim, Determination of elastic constants of anisotropic solids from elastodynamic Green's Functions. Ultrasonics 34 (1996) 471–472.

    Article  Google Scholar 

  5. T. Dutta, T.K. Ballabh and T.R. Middya, Green-Function calculation of effective elastic constants of polycrystalline materials. J. Phys. D-Appl. Phys. 26 (1993) 667–675.

    Article  Google Scholar 

  6. R. Arias, Elastic fields of stationary and moving dislocations in finite samples. Phil. Mag. B 78 (1998) 109–113.

    Article  Google Scholar 

  7. T.C.T. Ting and D.M. Barnett, Image force on line dislocations in anisotropic elastic half-spaces with a fixed boundary. Int. J. Solids Struct. 30 (1993) 313–323.

    Article  Google Scholar 

  8. . J.P.Hirth and J. Lothe, Theory of Dislocations. Malabar, Florida: Kreiger Publishing Company (1992) 857pp.

    Google Scholar 

  9. V.K. Tewary, Multiscale Green's-function method for modeling point defects and extended defects in anisotropic solids: application to a vacancy and free surface in copper. Phys. Rev. B (2004) article number 094109.

  10. T.C.T. Ting, Anisotropic Elasticity: Theory and Applications. New York: Oxford University Press (1996) 570pp.

    Google Scholar 

  11. T. Mura, Microechanics of Defects in Solids. The Hague: Martinus Nijhoff Publishers (1982) 494pp.

    Google Scholar 

  12. T.C.T. Ting and V.G. Lee, The three-dimensional elastostatic Green's function for general anisotropic linear elastic solids. Q. J. Mech. Appl. Math. 50 (1997) 407–426.

    Article  Google Scholar 

  13. D.M. Barnett, The precise evaluation of derivatives of the anisotropic elastic Green's functions. Physica Status Solidi (b) 49 (1972) 741–748.

    Google Scholar 

  14. J.W. Deutz and H.R. Schober, Boundary value problems using elastic Green's functions. Comp. Phys. Comm. (Netherlands) 30 (1983) 87–91.

    Article  Google Scholar 

  15. S.A. Gunderson and J. Lothe, A new method for numerical calculations in anisotropic elasticity problems. Physica Status Solidi (b) 143 (1987) 73–85.

    Google Scholar 

  16. Y. Hisada, Efficient method for computing green's functions for a layered half-space with sources and receivers at close depths. Bull. Seismolog. Soc. Am. 85 (1995) 1525–1526.

    Google Scholar 

  17. E. Pan, Static green's functions in multilayered half spaces. Appl. Math. Modell. 21 (1997) 509–521.

    Article  Google Scholar 

  18. T.C.T. Ting, Green's functions for an anisotropic elliptic inclusion under generalized plane strain deformations. Q. J. Mech. Appl. Math. 49 (1996) 1–18.

    Article  Google Scholar 

  19. E. Pan and F.G. Yuan, Three-dimensional Green's functions in anisotropic bimaterials. Int. J. Solids Struct. 37 (2000) 5329–5351.

    Article  Google Scholar 

  20. C.Y. Wang, 2-Dimensional elastostatic Green's Functions for general anisotropic solids and generalization of Stroh's Formalism. Int. J. Solids and Struct. 31 (1994) 2591–2597.

    Article  Google Scholar 

  21. C.Y.Wang and J.D. Achenbach, A new method to obtain 3-D Green's functions for anisotropic solids. Wave Motion 18 (1993) 273–289.

    Article  Google Scholar 

  22. C.Y. Wang, Elastic fields produced by a point source in solids of general anisotropy. J. Engng. Math. 32 (1997) 41–52.

    Article  Google Scholar 

  23. J.R. Willis, Self-similar problems in elastodynamics. Phil. Trans. R. Soc. A274 (1973) 435–491.

    Google Scholar 

  24. I.N. Sneddon, Fourier Transforms. New York: McGraw Hill (1951) 542 pp.

    Google Scholar 

  25. E. Pan and B. Yang, Elastostatic fields in an anisotropic substrate due to a buried quantum dot. J. Appl. Phys. 90 (2001) 6190–6196.

    Article  Google Scholar 

  26. E. Pan, Three-dimensional Green's functions in an anisotropic half space with general boundary conditions. J. Appl. Mech.-Trans. ASME 70 (2003) 101–110.

    Google Scholar 

  27. K.P.Walker, Fourier integral representation of the Green function for an anisotropic elastic half-space. Proc. R. Soc., London A 443 (1993) 367–389.

    Google Scholar 

  28. B. Yang and V.K. Tewary, Formation of a surface quantum dot near laterally and vertically neighboring dots. Phys. Rev. B 68 (2003) article number 035301.

    Google Scholar 

  29. H. Hasegawa, V.G. Lee and T. Mura, Green-functions for axisymmetrical problems of dissimilar elastic solids. J. Appl. Mech.-Trans. ASME 59 (1992) 312–320.

    Google Scholar 

  30. R. Rajapakse and Y. Wang, Greens-functions for transversely isotropic elastic half-space. J. Engng. Mech.-ASCE 119 (1993) 1724–1746.

    Google Scholar 

  31. I.N. Sneddon, Fourier-transform solution of a boussinesq problem for a hexagonally aeolotropic elastic halfspace. Q. J. Mech. Appl. Math. 45 (1992) 607–616.

    Google Scholar 

  32. H.Y. Yu, S.C. Sanday and C.I. Chang, Elastic inclusions and inhomogeneities in transversely isotropic solids. Proc. R. Soc. London A 444 (1994) 239–252.

    Google Scholar 

  33. Z.Q. Yue, Closed-form Green's functions for transversely isotropic bi-solids with a slipping interface. Struct. Engng. Mech. 4 (1996) 469–484.

    Google Scholar 

  34. R.Y.S. Pak and F. Ji, Axisymmetrical stress-transfers from an embedded elastic cylindrical-shell to a halfspace. Proc. R. Soc. London A 441 (1993) 237–259.

    Google Scholar 

  35. M.A. Sales and L.J. Gray, Evaluation of the anisotropic Green's function and its derivative. Comp. Struct. 69 (1998) 247–254.

    Article  Google Scholar 

  36. Y.C. Pan and T.W. Chou, Point force Solution for an infinite transversely isotropic solid. J. Appl. Mech.-Trans. ASME 43 (1976) 608–612.

    Google Scholar 

  37. Y.C. Pan and T.W. Chou, Green's function solutions for semi-infinite transversely isotropic materials. Int. J. Engng. Sci. 17 (1979) 545–551.

    Article  Google Scholar 

  38. Y.C. Pan and T.W. Chou, Green's functions for two-phase transversely isotropic materials. J. Appl. Mech.-Trans. ASME 46 (1979) 551–556.

    Google Scholar 

  39. C.D. Wang, C.S. Tzeng, E. Pan, J.J. Liao, Displacements and stresses due to a vertical point load in an inhomogeneous transversely isotropic half-space. Int. J. Rock Mech. Mining Sci. 40 (2003) 667–685.

    Article  Google Scholar 

  40. D.M. Barnett and J. Lothe, Line force loadings on anisotropic half-spaces and wedges. Physica Norvegica 8 (1975) 13–22.

    Google Scholar 

  41. J.R. Barber, Some polynomial solutions for the non-axisymmetric boussinesq problem. J. Elasticity 14 (1984) 217–221.

    Google Scholar 

  42. E. Pan and F.G. Yuan, Boundary element analysis of three-dimensional cracks in anisotropic solids. Int. J. Num. Meth. Engng. 48 (2000) 211–237.

    Article  Google Scholar 

  43. F. Tonon, E. Pan and B. Amadei, Green's functions and boundary element method formulation for 3D anisotropic media. Comp. Struct. 79 (2001) 469–482.

    Article  Google Scholar 

  44. M. Gellert, Discrete numerical-solution of the generalized Boussinesq problem. Int. J. Num. Meth. Engng. 21 (1985) 2131–2144.

    Article  Google Scholar 

  45. J.R. Willis, Hertzian contact of anisotropic bodies. J. Mech. Phys. Solids 14 (1966) 163–176.

    Article  Google Scholar 

  46. A.G. Every, Displacement field of a point force acting on the surface of an elastically anisotropic half-space. J. Physics A 27 (1994) 7905–7914.

    Article  Google Scholar 

  47. V.K. Tewary, Computationally efficient representation for elastodynamic and elastostatic Green's functions for anisotropic solids. Phys. Rev. B51 (1995) 15695–15702.

    Google Scholar 

  48. P.M. Morse and H. Feshbach, Methods of Mathematical Physics: Part I. New York: McGraw-Hill (1953) 1037pp.

    Google Scholar 

  49. V.K. Tewary, R.H. Wagoner and J.P. Hirth, Elastic Green's function for a composite solid with a planar interface. J. Materials Res. 4 (1989) 113–123.

    Google Scholar 

  50. V.K. Tewary, Elastic Greens-function for a bimaterial composite solid, containing a free-surface normal to the interface. J. Materials Res. 6 (1991) 2592–2608.

    Google Scholar 

  51. P.A. Martin, On Green's function for a biomaterial elastic half-plane. Int. J. Solids Struct. 40 (2003) 2101–2119.

    Article  Google Scholar 

  52. L. Pan, Boundary-Element Strategies and Discretzied Green's Functions. Ph.D. Thesis, Iowa State University (1997) 156pp.

  53. P.A. Martin and F.J. Rizzo, Partitioning, boundary integral equations, and exact Green's functions. Int. J. Num. Meth. Engng. 38 (1995) 3483–3495.

    Google Scholar 

  54. V.K. Tewary, M. Mahapatra and C.M. Fortunko, Green's function for anisotropic half-space solids in frequency space and calculation of mechanical impedance. J. Acoust. Soc. Am. 100 (1996) 2960–2963.

    Article  Google Scholar 

  55. K.Y. Kim, T. Ohtani, A.R. Baker and W. Sachse, Determination of all elastic constants of orthotropic plate specimens from group velocity data. Res. Nondestruct. Eval. 7 (1995) 13–29.

    Article  Google Scholar 

  56. V.K. Tewary, Mechanics of Fiber Composites. New York: John Wiley (1979) 288pp.

    Google Scholar 

  57. I.M. Gel'fand and G.E. Shilov, Generalized functions-Vol 1. New York: Academic Press (1964) 423 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tewary, V. Elastostatic Green's function for advanced materials subject to surface loading. Journal of Engineering Mathematics 49, 289–304 (2004). https://doi.org/10.1023/B:ENGI.0000031191.64358.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ENGI.0000031191.64358.a8

Navigation