Skip to main content
Log in

Degenerate-diffusion models for the spreading of thin non-isothermal gravity currents

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The gravitational spreading of a liquid with temperature-dependent viscosity is investigated. The aspect ratio of the layer of fluid is taken to be small, thus allowing significant simplifications to the equations governing the thermal and flow problems. The resulting equations are coupled through a dependency of the viscosity on temperature, three specific forms of which are considered. When the coupling is sufficiently strong, the flow is markedly different from the isothermal case and physically significant features seen in practice, such as a central plateau in the spreading profile, result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. King, D. S. Riley and A. Sansom, Gravity currents with temperature-dependent viscosity. Comp. Assisted Mech. Eng. Sci. 7 (2000) 251–277.

    Google Scholar 

  2. J. R. King, D. S. Riley and A. Sansom, Melt spreading with temperature-dependent viscosity. In: P. Ehrhard, D. S. Riley and P. H. Steen (eds.), Interactive Dynamics of Convection and Solidification. Dordrecht: Kluwer Academic Publishers (2001) pp.165–176.

    Google Scholar 

  3. A. Sansom, Gravity Currents with Temperature-Dependent Viscosity. PhD thesis University of Nottingham (2000) 187pp.

  4. C. C. Mei, Nonlinear gravity waves in a thin sheet of viscous fluid. J. Math. Phys. 45 (1966) 266–288.

    Google Scholar 

  5. S. H. Smith, On initial value problems for the flow in a thin sheet of viscous liquid. Zeitschr. angew. Math. Phys. 20 (1969) 556–560.

    Google Scholar 

  6. G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium. Prikl. Matem. Mekh. 16 (1952) 67–78.

    Google Scholar 

  7. H. E. Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface. J. Fluid Mech. 121 (1982) 43–48.

    Google Scholar 

  8. L. M. Hocking, The spreading of a thin drop by gravity and capillary. Q. J. Mech. Appl. Math. 36 (1983) 55–69.

    Google Scholar 

  9. K. F. Liu and C. C. Mei, Slow spreading of a sheet of Bingham fluid on an inclined plane. J. Fluid Mech. 207 (1989) 506–529.

    Google Scholar 

  10. X. Huang and M. H. Garcia, A Herschel-Bulkley model for mud flow down a slope. J. Fluid Mech. 374 (1998) 305–333.

    Google Scholar 

  11. N. J. Balmforth, A. S. Burbidge, R. V. Craster, J. Salzig and A. Shen, Visco-plastic models of isothermal lava domes. J. Fluid Mech. 403 (2000) 37–65.

    Google Scholar 

  12. A. B. Ross, S. K. Wilson and B. R. Duffy, Thin-film flow of a viscoplastic material round a large horizontal stationary or rotating cylinder. J. Fluid Mech. 430 (2001) 309–333.

    Google Scholar 

  13. P. Ehrhard and S. H. Davis, Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229 (1991) 365–388.

    Google Scholar 

  14. P. Ehrhard, Experiments on isothermal and non-isothermal spreading. J. Fluid Mech. 257 (1993) 463–483.

    Google Scholar 

  15. S. E. H. Sakimoto and M. T. Zuber, The spreading of variable-viscosity axisymmetric radial gravity currents: applications to the emplacement of Venusian 'pancake' domes. J. Fluid Mech. 301 (1995) 65–77.

    Google Scholar 

  16. D. Bercovici, A theoretical model of cooling viscous gravity currents with temperature-dependent viscosity. Geophys. Res. Lett. 21 (1994) 1177–1180.

    Google Scholar 

  17. M. V. Stasiuk, C. Jaupart and R. S. J. Sparks, Influence of cooling on lava-flow dynamics. J. Geology 21 (1993) 335–338.

    Google Scholar 

  18. N. J. Balmforth and R. V. Craster, Dynamics of cooling domes of viscoplastic fluid. J. Fluid Mech. 422 (2000) 225–248.

    Google Scholar 

  19. A. Oron, S. H. Davis and S. G. Bankhoff, Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (1997) 931–980.

    Google Scholar 

  20. S. K. Wilson and B. R. Duffy, On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate. J. Engng. Math. 42 (2002) 359–372.

    Google Scholar 

  21. S. K. Wilson and B. R. Duffy, Strong temperature-dependent viscosity effects on a rivulet draining down a uniformly heated or cooled slowly varying substrate. Phys. Fluids 15 (2003) 827–840.

    Google Scholar 

  22. D. P. Wall and S. K. Wilson, The linear stability of channel flow of fluid with temperature-dependent viscosity. J. Fluid Mech. 323 (1996) 107–132.

    Google Scholar 

  23. M-C. Wu and C-C. Hwang, Nonlinear theory of film rupture with viscosity variation. Int. Comm. Heat Mass Transfer 18 (1991) 705–713.

    Google Scholar 

  24. J. R. King, Multidimensional singular diffusion. J. Engng. Math. 27 (1993) 357–387.

    Google Scholar 

  25. J. R. King, Integral results for nonlinear diffusion equations. J. Engng. Math. 25 (1991) 191–205.

    Google Scholar 

  26. H. E. Huppert, J. B. Shepherd, H. Sigurdsson and R. S. J. Sparks, On lava dome growth with application to the 1979 lava extrusion of the Soufriere of St. Vincent. J. Volcanol. Geotherm. Res. 14 (1982) 199–222.

    Google Scholar 

  27. J. R. King, Two generalisations of the thin film equation. Math. Comp. Model. 34 (2001) 737–756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansom, A., King, J.R. & Riley, D.S. Degenerate-diffusion models for the spreading of thin non-isothermal gravity currents. Journal of Engineering Mathematics 48, 43–68 (2004). https://doi.org/10.1023/B:ENGI.0000009512.73393.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ENGI.0000009512.73393.54

Navigation