Skip to main content

Finite-element-based computational methods for cardiovascular fluid-structure interaction

Abstract

In this paper a combined arbitrary Lagrange-Euler fictitious domain (ALE-FD) method for fluid-structure interaction problems in cardiovascular biomechanics is derived in terms of a weighted residual finite-element formulation. For both fluid flow of blood and solid mechanics of vascular tissue, the performance of tetrahedral and hexahedral Crouzeix-Raviart elements are evaluated. Comparable convergence results are found, although for the test cases considered the hexahedral elements are more accurate. The possibilities that are offered by the ALE-FD method are illustrated by means of a simulation of valve dynamics in a simplified left ventricular flow model.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C.A. Taylor, Predictive medicine: computational techniques in therapeutic decision-making. Computer Aided Surgery 4 (1999) 231–247.

    Google Scholar 

  2. 2.

    F.J.H. Gijsen, E. Allanic, F.N. van de Vosse and J. D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube, J. Biomech. 32 (1999) 705–713.

    Google Scholar 

  3. 3.

    F.J.H. Gijsen, F.N. van de Vosse and J.D. Janssen, The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32 (1999) 601–608.

    Google Scholar 

  4. 4.

    G.A. Holzapfel, A new constitutive framework for arterial wall mechanics and a comparative study of material models. Elasticity 61 (2000) 1–48.

    Google Scholar 

  5. 5.

    M. Fortin, Old and new finite-elements for incompressible flow. Int. J. Num. Meth. Fluids 1 (1981) 347–354.

    Google Scholar 

  6. 6.

    M.P. Robichaud and P.A. Tanguy, Comparison of 3-D finite-elements for fluid flow. Commun. Appl. Num. Meth. 22 (1987) 1251–1267.

    Google Scholar 

  7. 7.

    J. Donea, S. Giuliani and J.P. Halleux, An arbitrary Langragian-Eulerian finite-element method for transient dynamic fluid structure interactions. Comp. Meth. Appl. Mech. Engng. 33 (1982) 689–723.

    Google Scholar 

  8. 8.

    P.J.G. Schreurs, Numerical Simulation of Forming Processes: the use of the Arbitrary-Eulerian-Langrangian (AEL) Formulation and the Finite Element Method. PhD thesis, University of Technology, Eindhoven (1983) 136 pp.

  9. 9.

    A.A. Johnson and T.E. Tezduyar, Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comp. Meth. Appl. Mech. Engng. 119 (1994) 73–94.

    Google Scholar 

  10. 10.

    P.J.R. Reuderink, Analysis of the Flow in a 3D Distendible Model of the Carotid Artery Bifurcation. PhD thesis, University of Technology, Eindhoven (1991) 138 pp.

    Google Scholar 

  11. 11.

    K. Perktold and G. Rappitsch, Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28 (1995) 845–856.

    Google Scholar 

  12. 12.

    M.C.M. Rutten, Fluid Solid Interaction in Large Arteries. PhD thesis, University of Technology, Eindhoven (1998) 124 pp.

    Google Scholar 

  13. 13.

    F. Bertrand, P.A. Tanguy and F. Thibault, A three-dimensional ficticious domain method for incompressible flow problems. Int. J. Num. Meth. Fluids 25 (1997) 719–736.

    Google Scholar 

  14. 14.

    R. Glowinski, T.W. Pan and J. Periaux, Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comp. Meth. Appl. Mech. Engng. 151 (1998) 181–194.

    Google Scholar 

  15. 15.

    N.A. Patankar, P. singh, D.D. Joseph, R. Glowinski and T.-W. Pan, A new formulation of the distributed Lagrange multiplier/ficticious domain method for particulate flows. Int. J. Multiphase Flows 26 (2000) 1509–1524.

    Google Scholar 

  16. 16.

    C.S. Peskin and D.M. McQueen, A general method for the computer simulation of biological systems interacting with fluids. Symposia Soc. Experimantal Biology 49 (1995) 265–276.

    Google Scholar 

  17. 17.

    F.P.T. Baaijens, A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Num. Meth. Fluids 35 (2001) 743–761.

    Google Scholar 

  18. 18.

    J. de Hart, G.W.M. Peters, P.J.G. Schreurs and F.P.T. Baaijens, A two-dimensional fluid-structure interaction model of the aortic valve. J. Biomech. 33 (2000) 1079–1088.

    Google Scholar 

  19. 19.

    J. de Hart, Fluid-Structure Interaction in the Aortic Heart Valve: A Three-Dimensional Computational Analysis. PhD thesis, University of Technology, Eindhoven (2002) 127 pp.

    Google Scholar 

  20. 20.

    R. Temam, Navier-Stokes Equations. Amsterdam: North-Holland (1977) 526 pp.

    Google Scholar 

  21. 21.

    J.D. Humphrey, Mechanics of the arterial wall: review and directions. Crit. Rev. Biomed. Engng. 23 (1995) 1–162.

    Google Scholar 

  22. 22.

    C.H.G.A. Oijen, Mechanics and Design of Fibre Reinforced Vascular Prosthesis. PhD thesis, University of Technology, Eindhoven (2003) 89 pp.

    Google Scholar 

  23. 23.

    R. Glowinski, T.W. Pan and J. Periaux, A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bidies: (i) case where the rigid body motions are known a priori. C.R. Acad. Sci. Paris 25 (1997) 361–369.

    Google Scholar 

  24. 24.

    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag (1981) 350 pp.

    Google Scholar 

  25. 25.

    A. Segal, SEPRAN Manual. Leidschendam (Netherlands): Ingenieursbureau SEPRA (2000).

    Google Scholar 

  26. 26.

    C.R. Ethier and D.A. Steinman, Exact fully 3D Navier-Stokes solutions for benchmarking. Int. J. Num. Meth. Fluids 19 (1994) 369–375.

    Google Scholar 

  27. 27.

    R.M. Berne and M.N. Levy, Cardiovascular Physiology. St. Louis: Mosby (1967) 312 pp.

    Google Scholar 

  28. 28.

    F. Bertrand, M.R. Gadbois and P.A. Tanguy, Tetrahedral elements for fluid flow. Int. J. Num. Meth. Engng. 33 (1992) 1251–1267.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

van de Vosse, F., de Hart, J., van Oijen, C. et al. Finite-element-based computational methods for cardiovascular fluid-structure interaction. Journal of Engineering Mathematics 47, 335–368 (2003). https://doi.org/10.1023/B:ENGI.0000007985.17625.43

Download citation

  • arbitrary Lagrange-Euler
  • blood flow
  • fictitious domain
  • fluid-structure interaction
  • vascular-tissue mechanics