Skip to main content
Log in

Principal Compliance and Robust Optimal Design

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The paper addresses a problem of robust optimal design of elastic structures when the loading is unknown and only an integral constraint for the loading is given. We propose to minimize the principal compliance of the domain equal to the maximum of the stored energy over all admissible loadings. The principal compliance is the maximal compliance under the extreme, worst possible loading. The robust optimal design is formulated as a min-max problem for the energy stored in the structure. The maximum of the energy is chosen over the constrained class of loadings, while the minimum is taken over the design parameters. It is shown that the problem for the extreme loading can be reduced to an elasticity problem with mixed nonlinear boundary conditions; the last problem may have multiple solutions. The optimization with respect to the designed structure takes into account the possible multiplicity of extreme loadings and divides resources (reinforced material) to equally resist all of them. Continuous change of the loading constraint causes bifurcation of the solution of the optimization problem. It is shown that an invariance of the constraints under a symmetry transformation leads to a symmetry of the optimal design. Examples of optimal design are investigated; symmetries and bifurcations of the solutions are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Allaire, Shape Optimization by the Homogenization Method. Springer, Berlin (2002).

    MATH  Google Scholar 

  2. M. Avellaneda, Optimal bounds and microgeometries for elastic two-phase composites. SIAM J. Appl. Math. 47 (1987) 1216–1228.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Avellaneda and G. W. Milton, Bounds on the effective elastic tensor of composites based on two-point correlations. J. Appl. Mech. (1989) 89–93.

  4. C. Bandle, Isoperimetric Inequalities and Applications. Pitman Publishing Program, London (1980).

    MATH  Google Scholar 

  5. M.P. Bendsoe, Optimization of Structural Topology, Shape, and Material. Springer, Berlin (1995).

    Google Scholar 

  6. M. Bendsoe, A. Diaz, R. Lipton and J. Taylor, Optimal design of material properties and material distribution for multiple loading conditions. Internat. J. Numer. Methods Engrg. 38(7) (1995) 1149–1170.

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Cherkaev, Stability of optimal structures of elastic composites. In: M. Bendsoe and C.A. Mota Soares (eds), Topology Design of Structures. Kluwer, Dordrecht (1992) pp. 547–558.

    Google Scholar 

  8. A. Cherkaev, Variational Methods for Structural Optimization. Springer, New York (2000).

    MATH  Google Scholar 

  9. A. Cherkaev and E. Cherkaeva, Optimal design for uncertain loading conditions. In: V. Berdichevsky, V. Jikov and G. Papanicolaou (eds), Homogenization. World Scientific, Singapore (1999) pp. 193–213.

    Google Scholar 

  10. A. Cherkaev, L. Krog and I. Kucuk, Stable Optimal design of two-dimensional structures made from optimal composites. Control Cybernet. 27(2) (1998) 265–282.

    MATH  MathSciNet  Google Scholar 

  11. E. Cherkaeva, Optimal source control and resolution in nondestructive testing. J. Structural Optim. 13(1) (1997) 12–16.

    Article  Google Scholar 

  12. E. Cherkaeva and A. Cherkaev, Bounds for detectability of material damage by noisy electrical measurements. In: N. Olhoff and G.I.N. Rozvany (eds), Structural and Multidisciplinary Optimization. Pergamon, New York (1995) pp. 543–548.

    Google Scholar 

  13. E. Cherkaeva and A.C. Tripp, Inverse conductivity problem for inexact measurements. Inverse Problems 12 (1996) 869–883.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. S.J. Cox and M.L. Overton, On the optimal design of columns against buckling. SIAM J. Math. Anal. 23(2) (1992) 287–325.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Dagorogna, Direct Methods in the Calculus of Variations. Springer, Berlin (1989).

    Google Scholar 

  16. V.F. Demyanov and V.N. Malozemov, Introduction to Minimax. Dover, New York (1990).

    Google Scholar 

  17. G.A. Francfort, F. Murat and L. Tartar, Fourth-order moments of nonnegative measures on S2 and applications. Arch. Rational Mech. Anal. 131(4) (1995) 305–333.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. M.B. Fuchs and E. Farhi, Shape of stiffest controlled structures under unknown loads. Comput. Struct. 79(18) (2001) 1661–1670.

    Article  Google Scholar 

  19. M.B. Fuchs and S. Hakim, Improved multivariate reanalysis of structures based on the structural variation method. J. Mech. Struct. Mach. 24(1) (1996) 51–70.

    Google Scholar 

  20. L. Gibiansky and A. Cherkaev, Microstructures of composites of extremal rigidity and exact bounds on the associated energy density. Ioffe Physico-Technical Institute, Academy of Sciences of USSR, Report N. 1115, Leningrad (1987). Translation in: A. Cherkaev and R. V. Kohn (eds), Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Basel (1997) pp. 273–317.

    Google Scholar 

  21. R.T. Haftka and Z. Gurdal, Elements of Structural Optimization. Kluwer, Dordrecht (1992).

    MATH  Google Scholar 

  22. L.A. Krog and N. Olhoff, Topology optimization of plate and shell structures with multiple eigenfrequencies. In: N. Olhoff and G.I.N. Rozvany (eds), Structural and Multidisciplinary Optimization. Pergamon, Oxford (1995) pp. 675–682.

    Google Scholar 

  23. J.R. Kuttler, Bounds for Stekloff eigenvalues. SIAM J. Numer. Anal. 19(1) (1982) 121–125.

    Article  MATH  MathSciNet  Google Scholar 

  24. O.A. Ladyzhenskaya and N.N. Uraltseva, Linear and Quasilinear Elliptic Equations. New York/London (1968).

  25. T. Lewinski and J.J. Telega, Plates, laminates and shells. Asymptotic Analysis and Homogenization. World Scientific, Singapore (2000).

    Google Scholar 

  26. R. Lipton, Optimal design and relaxation for reinforced plates subject to random transverse loads.J. Probab. Engrg. Mech. 9 (1994) 167–177.

    Article  ADS  Google Scholar 

  27. K.A. Lurie, Applied Optimal Control Theory of Distributed Systems. Plenum, New York (1993).

  28. E.F. Masur, On structural design under multiple eigenvalue constraints. Internat. J. Solids Struct. 20 (1984) 211–231.

    Article  MATH  MathSciNet  Google Scholar 

  29. G.W. Milton, Theory of Composites. Cambridge Univ. Press, Cambridge (2002).

    MATH  Google Scholar 

  30. N. Olhoff and S.H. Rasmussen, On bimodal optimum loads of clamped columns. Internat. J. Solids Struct. 13 (1977) 605–614.

    Article  MATH  Google Scholar 

  31. N. Olhoff and J.E. Taylor, On structural optimization. J. Appl. Mech. 50(4) (1983) 1139–1151.

    Article  MATH  MathSciNet  Google Scholar 

  32. G.I.N. Rozvany, Structural Design via Optimality Criteria. Kluwer Academic Publishers, Dordrecht, The Netherlands (1989).

    MATH  Google Scholar 

  33. A.P. Seyranian, Multiple eigenvalues in optimization problems. Prikl. Mat. Mekh. 51 (1987) 272–275.

    Google Scholar 

  34. A.P. Seyranian, E. Lund and N. Olhoff, Multiple eigenvalues in structural optimization problems. J. Struct. Optim. 8 (1994) 207–227.

    Article  Google Scholar 

  35. S. Timoshenko, Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970).

    MATH  Google Scholar 

  36. R. Weinstock, Calculus of Variations with Applications to Physics and Engineering. Dover, New York (1974).

  37. J. Zowe, M. Kocvara and M.P. Bendsoe, Free material optimization via mathematical programming. Math. Programming 79(1–3) (1997) 445–466.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherkaev, E., Cherkaev, A. Principal Compliance and Robust Optimal Design. Journal of Elasticity 72, 71–98 (2003). https://doi.org/10.1023/B:ELAS.0000018772.09023.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ELAS.0000018772.09023.6c

Navigation