Skip to main content
Log in

Minimum Free Energies for Materials with Finite Memory

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Finite memory viscoelastic materials are of interest because (a) they are not necessarily experimentally distinguishable from materials with infinite memory; and (b) the assumption of infinite memory can, in certain contexts, lead to results that run counter to physical intuition. An example of this - the quasi-static viscoelastic membrane in a frictional medium - is discussed. It is shown that, for a finite memory material, the singularity structure of the Fourier transform of the relaxation function derivative is quite different from the infinite memory case in the sense that it is an entire function with all its singularities being essential singularities at infinity. The formula for the minimum free energy [1] is still valid in this case. In contrast to the work function, this quantity, and all other functions of the minimal state, depend only on the values of the history over the period when the relaxation function derivative is nonzero. The factorization required to determine the form of the minimum free energy can be carried out explicitly for simple step-function choices of the relaxation function derivative. The two simplest cases are fully worked through and explicit formulae are given for all relevant quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Golden, Free energies in the frequency domain: the scalar case. Quart. Appl. Math. 58 (2000) 127–150.

    MATH  MathSciNet  Google Scholar 

  2. L. Deseri, G. Gentili and J.M. Golden, An explicit formula for the minimum free energy in linear viscoelasricity. J. Elasticity 54 (1999) 141–185.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Fabrizio and J.M. Golden, Maximum and minimum free energies for a linear viscoelastic material. Quart. Appl. Math. 60 (2002) 341–381.

    MATH  MathSciNet  Google Scholar 

  4. W. Noll, A new mathematical theory of simple materials. Arch. Rational Mech. Anal. 48 (1972) 1–50.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. M. Fabrizio, G. Gentili and J.M. Golden, The minimum free energy for a class of compressible viscoelastic fluids. Adv. in Differential Equations 7 (2002) 319–342.

    MATH  MathSciNet  Google Scholar 

  6. G. Del Piero and L. Deseri, On the concepts of state and free energy in linear viscoelasticity. Arch. Rational Mech. Anal. 138 (1997) 1–35.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. G. Del Piero and L. Deseri, On the analytic expression of the free energy in linear viscoelasticity. J. Elasticity 43 (1996) 247–278.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Graffi and M. Fabrizio, Sulla nozione di stato materiali viscoelastici di tipo 'rate'. Atti Accad. Naz. Lincei 83 (1990) 201–208.

    MathSciNet  Google Scholar 

  9. M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity. SIAM, Philadelphia, PA (1992).

    Google Scholar 

  10. J.M. Golden and G.A.C. Graham, Boundary Value Problems in Linear Viscoelasticity. Springer, Berlin (1988).

    Google Scholar 

  11. M.E. Gurtin and I. Herrera, On dissipation inequalities and linear viscoelasticity. Quart. Appl. Math. 23 (1988) 235–245.

    MathSciNet  Google Scholar 

  12. W.A. Day, Thermodynamics based on a work axiom. Arch. Rational Mech. Anal. 31 (1968) 1–34.

    Article  MATH  ADS  Google Scholar 

  13. E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals. Clarendon Press, Oxford (1937).

    Google Scholar 

  14. I.N. Sneddon, The Use of Integral Transforms. McGraw-Hill, New York (1972).

    Google Scholar 

  15. M. Fabrizio, C. Giorgi and A. Morro, Free energies and dissipation properties for systems with memory. Arch. Rational Mech. Anal. 125 (1994) 341–373.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. M. Fabrizio, Existence and uniqueness results for viscoelastic materials. In: G.A.C. Graham and J.R. Walton (eds), Crack and Contact Problems for Viscoelastic Bodies. Springer, Vienna (1995).

    Google Scholar 

  17. M. Fabrizio and S. Polidoro, On the exponential decay for differential systems with memory. Applicable Analysis 81 (2002) 1245–1266.

    Article  MATH  MathSciNet  Google Scholar 

  18. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. Cambridge Univ. Press, Cambridge (1963).

    Google Scholar 

  19. J. Ramanathan, Methods of Applied Fourier Analysis. Birkhäuser, Boston (1998).

    Google Scholar 

  20. B.D. Coleman, Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17 (1964) 1–46.

    MathSciNet  ADS  Google Scholar 

  21. B.D. Coleman and V.J. Mizel, A general theory of dissipation in materials with memory. Arch. Rational Mech. Anal. 27 (1967) 255–274.

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Morro and M. Vianello, Minimal and maximal free energy for materials with memory. Boll. Un. Mat. Ital. 4A (1990) 45–55.

    MathSciNet  Google Scholar 

  23. N.I. Muskhelishvili, Singular Integral Equations. Noordhoff, Groningen (1953).

    Google Scholar 

  24. L. Deseri, G. Gentili and J.M. Golden, Free energies and Saint-Venant's principle in linear viscoelasricity, submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabrizio, M., Golden, M. Minimum Free Energies for Materials with Finite Memory. Journal of Elasticity 72, 121–143 (2003). https://doi.org/10.1023/B:ELAS.0000018771.71385.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ELAS.0000018771.71385.05

Navigation