Skip to main content
Log in

The Hanging Rope of Minimum Elongation for a Nonlinear Stress-Strain Relation

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We consider the problem of determining the shape that minimizes the elongation of a rope that hangs vertically under its own weight and an applied force, subject to either a constraint of fixed total mass or fixed total volume. The constitutive function for the rope is given by a nonlinear stress-strain relation and the mass-density function of the rope can be variable. For the case of fixed total mass we show that the problem can be explicitly solved in terms of the mass density function, applied force, and constitutive function. In the special case where the mass-density function is constant, we show that the optimal cross-sectional area of the rope is as that for a linear stress-strain relation (Hooke's Law). For the total fixed volume problem, we use the implicit function theorem to show the existence of a branch of solutions depending on the parameter representing the acceleration of gravity. This local branch of solutions is extended globally using degree theoretic techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. II(17) (1964) 35–92.

    MathSciNet  Google Scholar 

  2. J.C. Alexander and J.A. Yorke, The implicit function theorem and the global methods of cohomology. J. Funct. Anal. 21 (1976) 330–339.

    Article  MATH  MathSciNet  Google Scholar 

  3. S.S. Antman, Nonlinear Problems of Elasticity, Applied Mathematical Sciences 107. Springer, New York (1995).

    MATH  Google Scholar 

  4. F.E. Browder, On the continuity of fixed points under deformations of continuous mappings. Summa Brazil. Mat. 4 (1960) 183–191.

    MATH  MathSciNet  ADS  Google Scholar 

  5. S.J. Cox, The shape of the ideal column. Math. Intelligencer 14(1) (1992) 16–24.

    Article  MATH  MathSciNet  Google Scholar 

  6. S.J. Cox and M. McCarthy, The shape of the tallest column. SIAM J. Math. Anal. 29(3) (1998) 547–554.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Euler, De motu corporum flexibilum. Comm. Acad. Sci. Petrop. 14 (1751) 182–196.

    Google Scholar 

  8. C.C. Fenske, Extensio gradus ad quasdam applicationes Fredholmii. Mitt. Math. Seminar Giessen 121 (1976) 65–70.

    MATH  MathSciNet  Google Scholar 

  9. T.J. Healey, Global continuation in displacement problems of nonlinear elastostatics via the Leray-Schauder degree. Arch. Rational Mech. Anal. 152 (2000) 273–282.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. T.J. Healey and P. Rosakis, Unbounded branches of classical injective solutions to the forced displacement problem in nonlinear elastostatics. J. Elasticity 49 (1997) 65–78.

    Article  MATH  MathSciNet  Google Scholar 

  11. T.J. Healey and H.C. Simpson, Global continuation in nonlinear elasticity. Arch. Rational Mech. Anal. 143 (1998) 1–28.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. H. Kielhöfer, Multiple eigenvalue bifurcation for Fredholm mappings. J. Reine Angew. Math. 358 (1985) 104–124.

    MATH  MathSciNet  Google Scholar 

  13. J.B. Keller and F.I. Niordson, The tallest column. J. Math. Mech. 16 (1966) 433–446.

    MATH  MathSciNet  Google Scholar 

  14. J.L. Lagrange, Application de la méthode exposée précédente à la solution de différens problèmes de dynamique. Misc. Tour. 2(2) (1762) 196–298.

    Google Scholar 

  15. S. Lang, Real Analysis, 2nd edn. Addison-Wesley, Reading, MA (1983).

    MATH  Google Scholar 

  16. J. Leray and J. Schauder, Topologie et équations fonctionelles. Ann. Sci. École Norm. Sup. 3(51) (1934) 45–78.

    MATH  MathSciNet  Google Scholar 

  17. I. Stakgold, Green's Functions and Boundary Value Problems. Wiley, New York (1979).

    MATH  Google Scholar 

  18. J.L. Troutman, Variational Calculus with Elementary Convexity. Springer, New York (1983).

    MATH  Google Scholar 

  19. T. Valent, Boundary Value Problems of Finite Elasticity, Springer Tracts in Natural Philosophy. Springer, New York (1988).

    MATH  Google Scholar 

  20. G. Verma and J. Keller, Hanging rope of minimum elongation. SIAM Rev. (1983) 369–399.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negrón-Marrero, P.V. The Hanging Rope of Minimum Elongation for a Nonlinear Stress-Strain Relation. Journal of Elasticity 71, 133–155 (2003). https://doi.org/10.1023/B:ELAS.0000005590.27603.aa

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ELAS.0000005590.27603.aa

Navigation