Kleinbaum DG, Morgenstern H, Kupper LL. Selection bias in epidemiologic studies. Am J Epidemiol 1981; 113: 452–463.
Google Scholar
Greenland S. Response and follow-up bias in cohort studies. Am J Epidemiol 1977; 106: 184–187.
Google Scholar
Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Meth 2002; 7: 147–177.
Google Scholar
Butler CW, Snyder M, Wood DE, Curtis JR, Albert RK, Benditt JO. Underestimation of mortality following lung volume reduction surgery resulting from incomplete follow-up. Chest 2001; 119: 1056–1060.
Google Scholar
Rothman KJ, Greenland S. Modern Epidemiology. Philadelphia, PA: Lippincott-Raven, 1998.
Google Scholar
Hollen PJ, Gralla RJ, Cox C, Eberly SW, Kris MG. A dilemma in analysis: issues in the serial measurement of quality of life in patients with advanced lung cancer. Lung Cancer 1997; 18: 119–136.
Google Scholar
Deeg DJH. Attrition in longitudinal population studies: does it affect the generalizability of the findings? An introduction to the series. J Clin Epidemiol 2002; 55: 213–215.
Google Scholar
Lohr SL. Nonresponse. In: Lohr SL (ed.), Sampling: design and analysis. Pacific Grove: Duxbury Press, 1999: 255–287.
Google Scholar
Altman DG. Statistics in medical journals: some recent trends. Stat Med 2000; 19: 3275–3289.
Google Scholar
Babbie ER. Survey research methods. Belmont, CA: Wadsworth, 1973.
Google Scholar
Little RJA, Rubin DB. Statistical analysis with missing data. New York: John Wiley & Sons, 1987.
Google Scholar
Twisk J, de Vente W. Attrition in longitudinal studies: how to deal with missing data. J Clin Epidemiol 2002; 55: 329–337.
Google Scholar
Siddiqui O, Flay BR, Hu FB. Factors affecting attrition in a longitudinal smoking prevention study. Prev Med 1996; 25: 554–560.
Google Scholar
Collins LM, Schafer JL, Kam C. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Meth 2001; 6: 330–351.
Google Scholar
McLean RR, Hannan MT, Epstein BE, Bouxsein ML, Cupples LA, Murabito J, et al. Elderly cohort study subjects unable to return for follow-up have lower bone mass than those who can return. Am J Epidemiol 2000; 151: 689–692.
Google Scholar
Bisgard KM, Folsom AR, Hong CP, Sellers TA. Mortality and cancer rates in nonrespondents to a prospective study of older women: 5-year follow-up. Am J Epidemiol 1994; 139: 990–1000.
Google Scholar
Diggle PJ. Testing for random dropouts in repeated measurement data. Biometrics 1989; 45: 1255–1258.
Google Scholar
Elashoff JD, Elashoff RM. Two-samples problems for a dichotomous variable with missing data. Appl Stats 1974; 23: 26–34.
Google Scholar
Maldonado G, Greenland S. The importance of critically interpreting simulation studies. Epidemiology 1997;8: 453–456.
Google Scholar
Kristman V, Manno M, Côté P. The potential impact of attrition bias in cohort studies: A simulation study. Working Paper No. 180. Toronto: Institute for Work & Health, 2002.
Google Scholar
Crawford SL, Tennstedt SL, McKinlay JB. A comparison of analytic methods for non-random missingness of outcome data. J Clin Epidemiol 1995; 48: 209–219.
Google Scholar
Bootsma-van der Wiel A, van Exel E, de Craen AJM, Gussekloo J, Lagaay AM, Knook DL, et al. A high response is not essential to prevent selection bias: results from the Leiden 85-plus study. J Clin Epidemiol 2002; 55: 1119–1125.
Google Scholar
Kempen GIJM, van Sonderen E. Psychological attributes and changes in disability among low-functioning older persons: does attrition affect the outcomes? J Clin Epidemiol 2002; 55: 224–229.
Google Scholar