Skip to main content
Log in

Ring-Testing and Field-Validation of a Terrestrial Model Ecosystem (TME) – An Instrument for Testing Potentially Harmful Substances: Effects of Carbendazim on Earthworms

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The effects of the fungicide carbendazim (applied in the formulation Derosal®) on earthworms (Lumbricidae) was determined in Terrestrial Model Ecosystem (TME) tests and field-validation studies. TMEs consisted of intact soil columns (diameter 17.5 cm; length 40 cm) taken from a grassland or, in one case, from an arable site. The TMEs were taken from the same site where the respective field-validation study was performed. The tests were performed in Amsterdam (The Netherlands), Bangor (Wales, UK), Coimbra (Portugal) and Flörsheim (Germany). The sites selected had an earthworm coenosis representative of the different land use types and regions. In addition, the differences between the coenosis found in the TMEs and the respective field sites were in general low. A high variability was found between the replicate samples, which reduces the probability of determining significant differences by the statistical evaluation of the data. Similar effects of the chemical treatment were observed on abundance as well as on biomass. Effects were most pronounced 16 weeks after application of the test chemical. The observed effects on earthworm abundance and biomass did not differ between the TME tests and the respective field-validation studies. Effects on earthworm diversity were difficult to assess since the number of individuals per species was low in general. However, the genus Lumbricus and in particular L. terrestris and L. rubellus seemed to be more affected by the chemical treatment than others. NOEC and EC50-values derived from the TME pre-test, the TME ring-test and the field-validation study indicate that the TMEs of the different partners delivered comparable results although different soils were used. Due to the high variability NOECs could often not be determined. The EC50-values for the effect of carbendazim on earthworm abundance ranged between 2.04 and 48.8 kg a.i./ha (2.71–65.2 mg/kg soil) and on earthworm biomass from 1.02 to 34.6 kg a.i./ha (1.36–46.0 mg/kg soil). These results indicate that the abundance and biomass of earthworms are suitable endpoints in ecotoxicological studies with TMEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adema, D.M., Barug, D. and Vonk, J.W. (1985). Comparison of the effects of several chemicals on microorganisms, higher plants and earthworms. In Actes Symposium Intl. ''Ecotoxicologie terrestre''. pp. 199-214.

  • Bouché, M. (1972). Lombriciens de France. Ecologie et Systematique. Paris, France: INRA Publ. 72-2, Institut National de Recherches Agriculturelles, 671 pp.

    Google Scholar 

  • Cairns, J. (1984). Are single species toxicity tests alone adequate for estimating environmental hazard? Environ. Monit. Assessm. 4, 259-73.

    Google Scholar 

  • Checkai, R.T., Wentsel, R.S., Phillips, C.T. and Yon, R.L. (1993). Controlled environment soil-core microcosm unit for investigating fate, migration, and transformation of chemicals in soils. J. Soil Contamination 2, 229-43.

    Google Scholar 

  • Cook, M.E. and Swait, A.A.J. (1975). Effects of some fungicide treatments on earthworm populations and leaf removal in apple orchards. J. hort. Sci. 50, 495-9.

    Google Scholar 

  • Cuppen, J.G.M., Van den Brink, P.J., Camps, E., Uil, K.F. and Brock, T.C.M. (2000). Impact of the fungicide carbendazim on freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macro invertebrates. Aquat. Toxicol. 48, 233-50.

    Google Scholar 

  • Dunger, W. and Fiedler, H.J. (1997). Methoden der Bodenbiologie, Jena: G. Fischer Verlag. 539 pp.

    Google Scholar 

  • Edwards, C.A. (1984). Report of the second stage in development of a standardized laboratory method for assessing the toxicity of chemical substances to earthworms. Environment and quality of life, Report EUR 9360 EN. Commission of the European Communities, Luxembourg, 99 pp.

    Google Scholar 

  • Edwards, C.A. and Bohlen, P.J. (1996). Biology end Ecology of Earthworms, 3rd edn., 426 pp. London: Chapman and Hall.

    Google Scholar 

  • Edwards, C.A., Knacker, T. and Pokarzhevskii, A. (1998). The prediction of the fate and effects of pesticides in the environment using tiered laboratory soil microcosms. The 1998 Brighton Conf.-Pests Diseases 4C-1, 267-72.

    Google Scholar 

  • EPPO (2001). Environmental risk assessment for plant protection products. Chapter 7: Soil organisms and functions. EPPO Standards, draft version 2001-02-12. Organisation Europé-enne et Méditerrané enne pour la protection des Plantes 1, Paris.

  • Federschmidt, A. (1994). Die Oligochätenfauna zweier Ökosysteme auf Lößlehm unter Berücksichtigung der Auswirkungen von Chemikalienstreß. Dissertation Universitä t Frankfurt.

  • Fredrickson, J.K., Van Voris, P., Bentjen, S.A. and Bolton, H. Jr. (1991). Terrestrial microcosm for evaluating the environmental fate and risks associated with the release of chemicals or genetically engineered micro-organisms to the environment. Toxic Subst. J. 11, 65-110.

    Google Scholar 

  • Frampton, G.K. and Wratten, S.D. (2000). Effects of benzimidazole and triazole fungicide use on epigeic species of Collembola in wheat. Ecotoxicol. Environ. Safety 46, 64-72.

    PubMed  Google Scholar 

  • Gillett, J.W. and Witt, J.M. (1980).Chemical evaluation: projected application of terrestrial microcosm technology. In J.P. Giesy, (ed). Microcosms in Ecological Research, pp. 1008-33. Springfield, Virginia, USA: Technical Information Centre US Department of Energy.

    Google Scholar 

  • Graff, O. (1953). Die Regenwü rmer Deutschlands. Schriftenreihe Forschungsinstitut Landwirtschaft 7, 1-70.

    Google Scholar 

  • Graff, O. (1957). De lumbricidis quibusdam in Lusitania habitantibus. Agronomia Lusitana 19, 299-304.

    Google Scholar 

  • Haanstra, L., Doelman, P. and Oude Voshaar, J.H. (1985). The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84, 293-7.

    Google Scholar 

  • Heimbach, F. (1988). A comparison of laboratory methods for toxicity testing with earthworms. In C.A. Edwards and E.F. Neuhauser, (eds). Earthworms in Waste and Environmental Management, pp. 329-35. The Hague: SPB Academic Publ.

    Google Scholar 

  • ISO (1993). Soil quality-Determination of particle size distribution in mineral soil material-Method by sieving and sedimentation following removal of soluble salts, organic matter and carbonates. Guideline 11277, International Organisation for Standardisation, Geneva.

    Google Scholar 

  • ISO (1994). Soil Quality-Determination of pH. Guideline 10390, International Organisation for Standardisation, Geneva.

    Google Scholar 

  • ISO (1995). Soil quality-Determination of organic carbon and total carbon after dry combustion. Guideline 10694, International Organisation for Standardisation, Geneva.

    Google Scholar 

  • ISO (1998). Soil quality Effects of pollutants on earthworms (Eisenia fetida). Part 2: Determination of effects on reproduction. Guideline 11268-2, International Organisation for Standardisation, Geneva.

    Google Scholar 

  • Keogh, R.G. and Whitehead, P.H. (1975). Observations on some effects of pasture spraying with benomyl and carbendazim on earthworm activity and litter removal from pasture. N. Z. J. Exp. Agric. 3, 103-4.

    Google Scholar 

  • Knacker, T., Van Gestel, C.A.M., Jones, S.E., Sousa, P., Schallnass, H.-J., Förster, B. and Edwards, C.A. (2004). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: Conceptual approach and study design. Ecotoxicology 13, 9-27.

    PubMed  Google Scholar 

  • Knacker, T., Römbke, J., Eder, M., Federschmidt, A., Förster, B. and Schallnass, H.-J. (1994). Arbeiten zur Ñbertragbarkeit und Präzisierung der Wirkungsmechanismen chemischer Belastung in verschiedenen Ökosystemen. TP 2: Zoologische und mikrobiologische Parameter zum Streuabbau. Bericht des Battelle-Instituts für das Bundesministerium für Bildung und Forschung Nr. 0339302B, 536 pp.

  • Knacker, T., Marcinkowski, A., Förster, B., Arthur, M.F. and Tolle, D.A. (1989). Refinement of terrestrial microcosms for evaluating fate and effects of chemicals. Brighton Crop Protection Conference-Weeds, 259-65.

  • Landis, W.G., Matthews, R.A. and Matthews, G.B. (1997). Design and analysis of multispecies toxicity tests for pesticide registration. Ecol. Appl. 7, 1111-6.

    Google Scholar 

  • Lofs-Holmin, A. (1981). Influence in field experiments of benomyl and carbendazim on earthworms (Lumbricidae) in relation to soil texture. Swed. J. Agric. Res. 11, 141-7.

    Google Scholar 

  • Morgan, E. and Knacker, T. (1994). The role of laboratory terrestrial model ecosystems in the testing of potentially harmful substances. Ecotoxicology 3, 213-33.

    Google Scholar 

  • Norusis, M.J. (1998). SPSS®8.0 Guide to data analysis, p. 563. Upper Saddle River.

  • OECD (2001). Guideline for Testing of Chemicals (Draft). Earthworm Reproduction Test (Eisenia fetida/andrei). Organisation for Economic Co-Operation and Development, Paris.

    Google Scholar 

  • Omodeo, P. (1988). The genus Eophila (Lumbricidae, Oligochaeta). Boll. Zool. 55, 73-84.

    Google Scholar 

  • Römbke, J., Beck, L., Förster, B., Fründ, C-H., Horak, F., Ruf, A., Rosciczewski, K., Scheurig, M. and Woas, S. (1997). Boden als Lebensraum für Bodenorganismen und bodenbiologische Standortklassifikation-Literaturstudie. Texte und Berichte zum Bodenschutz 4/97. Landesanstalt für Umweltschutz Baden-Württemberg (Karlsruhe). 390 pp. and appendix.

  • Sachs, L. (1999). Angewandte Statistik. Anwendung statistischer Methoden, 881 pp. Berlin.

  • Satchell, J.E. (1983). Earthworm Ecology. From Darwin to Vermiculture, 495 pp. London: Chapman and Hall.

    Google Scholar 

  • Satchell, J.E. (1955). Some aspects of earthworm zoology. In D.K. Mc. E. Kevan, (ed) Soil Zoology, pp. 180-201. London: Butterworths.

    Google Scholar 

  • Sheppard, S.C. (1997). Toxicity testing using microcosms. In: Tarradellas, J., Bitton, G. and Rossel, D. (eds). Soil Ecotoxicology, Lewis Publ., Boca Raton, pp. 345-73.

    Google Scholar 

  • Sims, R.W. and Gerard, B.M. (1985). Earthworms. In: Kermack, D.M. and Bames, R.S.K. (eds). Synopses of the British Fauna (New Series) No. 31. 171 pp. London: E.J. Brill/Dr. W. Backhuys.

    Google Scholar 

  • Sparks, T. (2000). Statistics in Ecotoxicology. 320 pp. Chichester: Wiley.

    Google Scholar 

  • Stop-Bøwitz, C. (1969). A contribution to our knowledge of the systematics & zoogeography of Norwegian earthworms. Nytt Magazin Zoologie 17, 169-280.

    Google Scholar 

  • Trigo, D., Mascato, R., Mato, S. and Diaz Cosin, D. (1988). Biogeographical divisions of continental Portugal as regards earthworm fauna. Boll. Zool. 55, 85-92.

    Google Scholar 

  • Van Gestel, C.A.M. (1992). Validation of earthworm toxicity tests by comparison with field studies: A review of benomyl, carbendazim, carbofuran, and carbaryl. Ecotoxol. Environ. Safety 23, 221-36.

    Google Scholar 

  • Van Gestel, C.A.M., Dirven-Van Breemen, E.M., Baerselman, R., Emans, J.J.B., Janssen, J.A.M., Postuma, R. and Van Vliet, P.J.M. (1992). Comparison of sublethal and lethal criteria for nine different chemicals in standardized toxicity tests using the earthworm Eisenia andrei. Ecotoxicol. Environ. Safety 23, 206-20.

    PubMed  Google Scholar 

  • Van Leeuwen, C.J. and Hermens, J.L.M. (eds). (1995). Risk Assessment of Chemicals. An Introduction, 374 pp. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Van Voris, P., Tolle, D.A. and Arthur, M.F. (1985). Experimental Terrestrial Soil-Core Microcosm Test Protocol. United States Environmental Protection Agency, Washington, EPA/600/3-85/047 PNL-5450, UC-11.

  • Velthorst, E.J. (1993). Manual for chemical water analysis. Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Vonk, J.W., Adema, D.M.M. and Barug, D. (1986). Comparison of the effects of several chemicals on microorganisms, higher plants and earthworms. In J.W. Assink, and W.J. Van den Brink (eds). Contaminated Soil, pp. 191-202.Dordrecht, The Netherlands: Martinus Nijhoff Publishers.

    Google Scholar 

  • Weyers, A., Sokull-Klüttgen, B., Knacker, T., Martin, S. and Van Gestel, C.A.M. (2004). Use of Terrestrial Model Ecosystem data in environmental risk assessment for industrial chemicals, biocides and plant protection products in the EU. Ecotoxicology 13, 163-176.

    PubMed  Google Scholar 

  • World Health Organisation (1993). Carbendazim. Environmental Health Criteria 149. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organisation, Geneva, Switzerland, pp. 1-125.

    Google Scholar 

  • Zicsi, A. (1976). Weitere Angaben zur Regenwurm-Fauna (Oligochaeta: Lumbricidae) des Tessins (Schweiz). Revue Suisse Zool. 83, 515-20.

    Google Scholar 

  • Zicsi, A. (1965). Eine neue Regenwurm-Art aus Portugal (Oligochaeta: Lumbricidae). Acta Zool. 11, 217-25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Römbke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römbke, J., Van Gestel, C.A., Jones, S.E. et al. Ring-Testing and Field-Validation of a Terrestrial Model Ecosystem (TME) – An Instrument for Testing Potentially Harmful Substances: Effects of Carbendazim on Earthworms. Ecotoxicology 13, 105–118 (2004). https://doi.org/10.1023/B:ECTX.0000012408.58017.08

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ECTX.0000012408.58017.08

Navigation