Skip to main content
Log in

Ring-Testing and Field-Validation of a Terrestrial Model Ecosystem (TME) – An Instrument for Testing Potentially Harmful Substances: Conceptual Approach and Study Design

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

During spring and summer 1999 a ring-test and field-validation study with an open, intact Terrestrial Model Ecosystem (TME) was conducted at four different European sites (Amsterdam, The Netherlands; Bangor, U.K.; Coimbra, Portugal; Flörsheim, Germany). The objective of the study was to establish a standardised method which allows the impact of chemical stressors on terrestrial compartments at ecosystem level to be investigated and possible uses of such data in existing Environmental Risk Assessments (ERAs) for chemicals to be evaluated. This issue of Ecotoxicology presents in a series of papers the results of the TME ring-test and field-validation study. Additionally, results derived from an open-homogeneous terrestrial microcosm (Integrated Soil Microcosm, ISM) are included in this series as a separate paper. In this first paper of the series background information on the planning and organisation of the study are given. The conceptual approach and the design of the study with TMEs are briefly outlined, based on the scientific discussion on the use of terrestrial microcosms in ecology and applied environmental sciences during the last 25 years. Further, some suggestions are presented on the selection of measurement endpoints to quantify structural and functional aspects of terrestrial ecosystems. Finally, the main results of the TME-study are summarised and conclusions are drawn on the technical feasibility of TMEs, their comparability with field studies and the potential use of TMEs in ERA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, D.J. and Briggs, G.G. (1976). A new extraction method for Benomyl residues in soil and its application in movement and persistence studies. Pestic. Sci. 7, 201-10.

    Google Scholar 

  • Baude, F.J., Pease, H.L. and Holt, R.F. (1974). Fate of Benomyl on field soil and turf. J. Agric. Food Chem. 22, 413-8.

    PubMed  Google Scholar 

  • Burrows, L.A. and Edwards, C.A. (2004). The use of Integrated Soil Microcosms to assess the impact of carbendazim on soil ecosystems. Ecotoxicology 13, 143-161.

    PubMed  Google Scholar 

  • Cairns, J., Lanza, G.R. and Parker, B.C. (1972). Pollution related structural and functional changes in aquatic communities with emphasis on freshwater algae and protozoa. Proc. Acad. Natl. Sci. Phil. 124, 79-127.

    Google Scholar 

  • Carpenter, S.R. (1996). Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77, 677-80.

    Google Scholar 

  • Checkai, R.T., Wentsel, R.S., Phillips, C.T. and Yon, R.L. (1993). Controlled environment soil-core microcosm unit for investigating fate, migration, and transformation of chemicals in soils. J. Soil Contam. 2, 229-43.

    Google Scholar 

  • Donnelly, P.K., Entry, J.A., Crawford, D.-L. and Cromack, K.Jr. (1990). Cellulose and lignin degradation in forest soils: response to moisture, temperature and acidity. Microb. Ecol. 20, 289-95.

    Google Scholar 

  • Drake, J.A., Huxel, G.R. and Hewitt, C.L. (1996). Microcosms as models for generating and testing community theory. Ecology 77, 670-7.

    Google Scholar 

  • Dunger, W. and Fiedler, H.J. (1989). Methoden der Bodenbiologie. Jena, Germany: S. Fischer Verlag.

    Google Scholar 

  • Eder, M. (1993). Untersuchung zum Streuabbau und zur Carboxymethylcellulase-Aktivitä t in einem Wiesen-und einem Waldö kosystem unter dem Einfluß des Funigizids Carbendazim. Dissertation J.W. Goethe Universität Frankfurt am Main, Germany.

    Google Scholar 

  • Edwards, C.A., Knacker, T., Pokarzhevskii, A., Subler, S. and Parmelee, R. (1996). The use of soil microcosms in assessing the effects of pesticides on soil ecosystems. Environmental Behaviour of Crop Protection Chemicals-Proceedings Series. (Article IAEA-SM-343/3) Proceedings of an International Symposium on the use of Nuclear and Related Techniques for Studying Environmental Behaviour of Crop Protection Chemicals jointly organized by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations. Vienna, 1-5 July 1996, ISBN92-0-104596-4, 519 pp.

  • Ellenberg, H. (1982). Vegetation Mitteleuropas mit den Alpen, 3rd edn. Germany: Verlag Ulmer.

    Google Scholar 

  • EU (2000). European Union, Working Document: Guidance Document on Terrestrial Ecotoxicology. European Commission, Directorate General for Agriculture, VI B II.1, pp. 1-15.

    Google Scholar 

  • Förster, B., Van Gestel, C.A.M., Koolhaas, J.E., Nentwig, G., Rodrigues, J.M.L., Sousa, J.P., Jones, S.E. and Knacker, T. (2004). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-An instrument for testing potentially harmful substances: effects of carbendazim on organic matter breakdown and soil fauna feeding activity. Ecotoxicology 13, 129-141.

    PubMed  Google Scholar 

  • Frahm, J. (1973). Verhalten und Nebenwirkungen von Benomyl. Z. Pflanzenkrankh. 80, 431-46.

    Google Scholar 

  • Fredrickson, J.K., Van Voris, P., Bentjen, S.A. and Bolton, H.Jr. (1991). Terrestrial microcosm for evaluating the environmental fate and risks associated with the release of chemicals or genetically engineered micro-organisms to the environment. Toxic Subst. J. 11, 65-110.

    Google Scholar 

  • Führ, F. and Hance, R.J. (eds). (1992). Lysimeter Studies of the Fate of Pesticides in the Soil. British Crop Protection Council Monograph No. 53, pp. 1-192, Lavenham, Suffolk, U.K: The Lavenham Press Ltd.

    Google Scholar 

  • Führ, F., Mittelstaedt, T., Pütz, T., Stork, A. and Dust, M. (1996). Use of lysimeters for determining pesticide fate in agroecosystems. Environmental Behaviour of Crop Protection Chemicals-Proceedings Series. (Article IAEA-SM-343/5) Proceedings of an International Symposium on the use of Nuclear and related Techniques for Studying Environmental Behaviour of Crop Protection Chemicals Jointly Organized by the International Atomic Energy Agency and the Food and Agriculture Organization of the United Nations. Vienna, 1-5 July 1996, ISBN 92-0-104596-4, 519 pp.

  • Giesy, J.P.Jr. and Odum, E.P. (1980). Microcosmology: introductory comments. In J.P.Jr. Giesy (ed.). Microcosms in Ecological Research, pp. 1-13. Springfield, Virginia, USA: Technical Information Center US Department of Energy.

    Google Scholar 

  • Gillett J.W. (1989). Terrestrial microcosms and mesocosms in ecotoxicologic research. In S.A. Levin, M.A. Harwell, J.R. Kelly and K.D. Kimball, (eds). Ecotoxicology: Problems and Approaches, Berlin, Germany pp. 280-313.

  • Gillett, J.W. and Witt, J.-M. (1979). Terrestrial microcosms. Proceedings, Corvallis, Oregon, June 13-14, 1977, Report NSF/RA-790034, National Science Foundation, Washington D.C., USA.

    Google Scholar 

  • Gillett, J.W. and Witt, J.-M. (1980). Chemical evaluation: projected application of terrestrial microcosm technology. In J.P.Jr. Giesy (ed.). Microcosms in Ecological Research, pp. 1008-1033. Springfield, Virginia, USA: Technical Information Center US Department of Energy.

    Google Scholar 

  • Goodman, E.D. (1982). The Limits of Microcosms: Problems in the Interpretation of Toxicity Results from Laboratory Multispecies Systems, ERC-13. Cornell Univ. Ithaca, NY, USA: Ecosystems Research Center.

    Google Scholar 

  • Greville, R.W. and Morgan, A.J. (1991). A comparison of lead, cadmium and zinc accumulation in terrestrial slugs maintained in microcosms: evidence for metal tolerance. Environ. Pollut. 74, 115-27.

    PubMed  Google Scholar 

  • Ives, A.R., Foufopoulos, J., Klopfer, E.D., Klug, J.L. and Palmer, T.M. (1996). Bottle or big-scale studies: how do we do ecology? Ecology 77, 681-5.

    Google Scholar 

  • Jaffee, B.A. (1996). Soil microcosms and the population biology of nematophagous fungi. Ecology 77, 690-3.

    Google Scholar 

  • Jones, S.E., Williams, D.J., Holliman, P.J., Taylor, N., Baumann, H.-J., Förster, B., Van Gestel, C.A.M. and Rodrigues, J.M.L. (2004). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: fate of the model chemical carbendazim. Ecotoxicology 13, 29-42.

    PubMed  Google Scholar 

  • Kelly, J.M., Strickland, R.C., Weatherford, F.P. and Noggle, J.C. (1984). Evaluation of simulated acid precipitation effects on forest microcosms, Final report EA-3500. Palo Alto, Electric Power Research Institute, 184 pp.

    Google Scholar 

  • Kidd, H. and James, D.R. (1992). The Agrochemical Handbook, 3rd edn, Cambridge, England, U.K: The Royal Society of Chemistry.

    Google Scholar 

  • Knacker, T., Schallnaß, H.-J., Marcinkowski, Förster, B. and Vincena, R. (1990). Einsetzbarkeit seminatürlicher (terrestrischer) Systeme für die Bewertung der Umweltgefährlichkeit nach dem ChemG. Final Report No. 106 03 069 on behalf of the German Federal Environmental Agency, Berlin, Germany.

    Google Scholar 

  • Koolhaas, J.E., Van Gestel, C.A.M., Römbke, J., Soares, A.M.V.M. and Jones, S.E. (2004). Ring-testing and fieldvalidation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of carbendazim on soil microarthropod communities. Ecotoxicology 13, 75-88.

    PubMed  Google Scholar 

  • Kuhnt, G. and Muntau, H. (eds) (1994). EURO-Soils: Identification, Collection, Treatment, Characterization, pp. 1-44. Ispra, Italy: Joint Research Centre European Commission, Special Publication No. 1.94.60.

    Google Scholar 

  • Lawton, J.H. (1996). The ecotron facility at Silwood park: the value of big bottle experiments. Ecology 77, 665-669.

    Google Scholar 

  • Lofs-Homin, A. (1981). Influence in field experiments of benomyl and carbendazim on earthworms (Lumbricidae) in relation to soil texture. Swedish J. Agric. Res. 11, 141-7.

    Google Scholar 

  • Mieth, A., Emde, M., Janzen, M. and Nissanga, J. (1993). Testung von Pflanzenschutzmitteln und Umweltchemikalien in Semi-Freiland-Modellö kosystemen. Final Report No. 126 05 083 on behalf of the German Federal Environmental Agency, Berlin, Germany.

    Google Scholar 

  • Moore, J.C., DeRuiter, P.C., Hunt, H.W., Coleman, D.C. and Freckman, D.W. (1996). Microcosms and soil ecology: critical linkages between field studies and modelling food webs. Ecology 77, 694-705.

    Google Scholar 

  • Moser, T., Schallnaß, H.-J., Jones, S.E., Van Gestel, C.A.M., Koolhaas, J.E., Rodrigues, J.M.L. and Römbke, J. (2004a). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of carbendazim on nematodes. Ecotoxicology 13, 61-74.

    Google Scholar 

  • Moser, T., Van Gestel, C.A.M., Jones, S.E., Koolhaas, J.E., Rodrigues, J.M.L. and Römbke, J. (2004b). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-An instrument for testing potentially harmful substances: effects of carbendazim on enchytraeids. Ecotoxicology 13, 89-103.

    PubMed  Google Scholar 

  • Morgan, E. and Knacker, T. (1994). The role of laboratory terrestrial model ecosystems in the testing of potentially harmful substances. Ecotoxicology 3, 213-33.

    Google Scholar 

  • Odum, E.P. (1962). Relationships between structure and function in ecosystems. Jpn. J. Ecology 12, 108-18.

    Google Scholar 

  • Pritchard, P.H. (1982). Model ecosystems. In R.A. Conway, (ed.). Environmental Risk Analysis for Chemicals, pp. 257-353. New York, USA: Van Nostrand Reinhold.

    Google Scholar 

  • Römbke, J. and Federschmidt, A. (1995). Effects of the funicide carbendazim on Enchytraeidae in laboratory and field tests. Newslett. Enchytraeidae 4, 79-96.

    Google Scholar 

  • Römbke, J. and Moser, Th. (2002). Validating the enchytraeid reproduction test: organisation and results of an international ringtest. Chemosphere 46, 1117-40.

    PubMed  Google Scholar 

  • Römbke, J., Van Gestel, C.A.M., Jones, S.E., Koolhaas, J.E., Rodrigues, J.M.L. and Moser, T. (2004). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of carbendazim on earthworms. Ecotoxicology 13, 105-118.

    PubMed  Google Scholar 

  • Schuphan, I., Schärer, E., Heise, M. and Ebing, W. (1987). Use of laboratory model ecosystems to evaluate quantitatively the behaviour of chemicals. In R. Greenhalgh and T.R. Roberts, (eds). Pesticide Science and Biotechnology, pp. 437-44 Oxford, U.K: Blackwell Sci. Publ.

    Google Scholar 

  • Seastedt, T.R. and Crossley, D.A.Jr. (1983). Nutrients in forest litter treated with naphthalene and simulated throughfall: a field microcosm study. Soil Biol. Biochem. 15, 159-65.

    Google Scholar 

  • Sheppard, S.C. (1997). Toxicity testing using microcosms. In J. Tarradellas, G. Bitton and D. Rossel, (eds). Soil Ecotoxicology, pp. 345-73. Boca Raton: Lewis Publ. Sousa et al. (2003).

    Google Scholar 

  • Suter, G. (1989). Ecological end points. In W. Warren-Hicks, B.R. Parkhurst and S.S. Baker, (eds). Ecological Assessment of Hazardous Waste Sites: A Field and Lab Reference Document, pp. 2.1-2.28. EPA 600/3-89/013, US EPA, Corvallis, OR, USA.

    Google Scholar 

  • TGD (1996). Technical Guidance Document in support of the Commission Directive 93/67/EEC on risk assessment for new notified substances and the Commission Regulation (EC) No 1488/94 on risk assessment for existing substances. Luxembourg, Office for Official Publications of the European Communities, Part II: Environmntal Risk Assessment, p. 241, ISBN 92-827-8011-2.

  • Van Gestel, C.A.M. (1992). Validation of earthworm toxicity tests by comparison with field studies: a review of benomyl, carbendazim, carbofuran and carbaryl. Ecotox. Environ. Safety 23, 221-6.

    Google Scholar 

  • Van Gestel, C.A.M., Koolhaas, J.E., Schallnaß, H.-J., Rodrigues, J.M.L. and Jones, S.E. (2004). Ring-testing and fieldvalidation of a Terrestrial Model Ecosystem (TME)-An instrument for testing potentially harmful substances: effects of carbendazim on nutrient cycling. Ecotoxicology 13, 119-128.

    PubMed  Google Scholar 

  • Van Voris, P., Tolle, D.A. and Arthur, M.F. (1985). Experimental Terrestrial Soil-core Microcosm Test Protocol. Washington: United States Environmental Protection Agency, EPA/600/3-85/047 PNL-5450, UC-11.

    Google Scholar 

  • Velthorst, E.J. (1993). Manual for Chemical Water Analysis. Wageningen, The Netherlands: Department of Soil Science and Geology, Agricultural University.

    Google Scholar 

  • Verhoef, H.A. (1996). The role of soil microcosms in the study of ecosystem processes. Ecology 77, 685-90.

    Google Scholar 

  • Von Törne, E. (1990). Assessing feeding activities of soil-living animals. I. Bait-lamina tests. Pedobiologia 34, 269-79.

    Google Scholar 

  • Weyers, A., Sokull-Klüttgen, B., Knacker, T., Martin, S. and Van Gestel, C.A.M. (2004). Use of Terrestrial Model Ecosystem data in Environmental Risk Assessment for industrial chemicals, biocides and plant protection products in the EU. Ecotoxicology 13, 163-176.

    PubMed  Google Scholar 

  • World Health Organisation (1993). Carbendazim. Environmental Health Criteria 149. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organisation, Geneva, Switzerland, pp. 1-125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knacker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knacker, T., van Gestel, C.A., Jones, S.E. et al. Ring-Testing and Field-Validation of a Terrestrial Model Ecosystem (TME) – An Instrument for Testing Potentially Harmful Substances: Conceptual Approach and Study Design. Ecotoxicology 13, 9–27 (2004). https://doi.org/10.1023/B:ECTX.0000012402.38786.01

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ECTX.0000012402.38786.01

Navigation