Skip to main content
Log in

Biotransfer of Selenium: Effects on an Insect Predator, Podisus maculiventris

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The effects of selenium (Se) accumulation in phytophagous insects on predators in the next trophic level were investigated. The generalist predator Podisus maculiventris Say (Hemiptera: Pentatomidae) was fed an herbivore Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) larvae from control diet and diets at two Se levels (0, 109, and 135 μg/g sodium selenate dry weight added). Predators reared on larvae grown on diets with sodium selenate took longer to complete each developmental stage and had significantly higher mortality rates. Predators achieving the adult stage on Se-containing hosts weighed 20% less than those feeding on control larvae. Reduced adult weight of insects has been associated with reduced fitness (longevity, egg production, etc.), which would have long-term negative impacts on population dynamics. These developmental and mortality effects resulted from biotransfer of Se, not biomagnification since the trophic transfer factor was less than 1.0 (∼0.85). Host larvae in Se-treatments contained significantly more total Se (9.76 and 13.0 μg/g Se dry weight host larvae) than their predators (8.34 and 11 μg/g Se dry weight predatory bugs, respectively). Host larvae and predators in the control groups did not differ in their Se content. These data demonstrate that Se in the food chain may have detrimental population level effects on insects even in the absence of biomagnification, given the host contains significantly elevated concentrations of selenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bañuelos, G.S., Ajwa, H.A., Mackey, B., Wu, L., Cook, C., Akohoue, S. and Zambruzuski, S. (1997). Evaluation of different plant species used for phytoremediation of high soil selenium. J. Environ. Qual. 26, 639-646.

    Google Scholar 

  • Bañuelos, G.S., Tebbets, J.S., Johnson, J., Vail, P.V. and Mackay, B. (1999). Survey of insects and biotransfer of selenium from plants used for phytoremediation. Int. J. Phytoremed. 1, 311-26.

    Google Scholar 

  • Besser, J.M., Geisy, J.P., Brown, R.W., Buell, J.M. and Dawson, G.A. (1996). Selenium bioaccumulation and hazards in a fish community affected by coal fly ash effluent. Ecotox. Environ. Saf. 35, 7-15.

    Google Scholar 

  • Boyd, R.S. and Wall, M.A. (2001). Responses of generalist predators fed high-Ni Melanotrichus boydi (Heteroptera: Miridae): elemental defense against the third trophic level. Am. Midl. Natl. 146, 186-98.

    Google Scholar 

  • Brown, G.E. Jr., Foster, A.L. and Ostergren, J.D. (1999). Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proc. Natl. Acad. Sci. 96, 3388-95.

    Google Scholar 

  • CH2M HILL. (1995). Kesterson Reservoir 1995 Biological Monitoring Report. Prepared for U.S. Bureau of Reclamation, Mid-Pacific Region by CH2M HILL, Sacramento, CA, USA.

  • Clausen, C.P. (1972). Entomophagous Insects, 688pp. New York: Hafner Publishing Co.

    Google Scholar 

  • DeBach, P. (1973). Biological Control of Insect Pests and Weeds, 844pp. London: Chapman & Hall.

    Google Scholar 

  • Ge, H., Cai, X.J., Tyson, J.F., Uden, P.C., Denoyer, E.R. and Block, E. (1996). Identification of selenium species in selenium-enriched garlic, onion and broccoli using high-performance ion chromatography with inductively coupled plasma mass spectrometry detection. Anal. Comm. 33, 279-81.

    Google Scholar 

  • Hogan, G.R. and Cole, B.S. (1988). Survival of Tribolium confusum (Coleoptera: Tenebrionidae) in basal-casein medium supplemented with sodium selenite. Environ. Entomol. 17, 770-7.

    Google Scholar 

  • Hogan, G.R. and Razniak, H.G. (1991). Selenium-induced mortality and tissue distribution studies in Tenebrio molitor (Coleoptera: Tenebrionidae). Environ. Entomol. 20, 790-4.

    Google Scholar 

  • Lalitha, K., Rani, P. and Narayanaswami, V. (1994). Metabolic relevance of selenium in the insect Corcyra cephalonica: uptake of 75Se and subcellular distribution. Biol. Trace Elem. Res. 41, 217-33.

    Google Scholar 

  • Laskowski, R. (1991). Are the top carnivores endangered by heavy metal biomagnification?. Oikos 60, 387-90.

    Google Scholar 

  • Lauchli, A. (1993). Selenium in plants: uptake, functions, and environmental toxicity. Bot. Acta. 106, 455-68.

    Google Scholar 

  • Lemly, A.D. (1996). Assessing the toxic threat of selenium to fish and aquatic birds. Environ. Monit. Assess. 43, 19-35.

    Google Scholar 

  • Lemly, A.D. (1997). Environmental implications of excessive selenium: a review. Biomed. Environ. Sci. 10, 415-35.

    Google Scholar 

  • Mackey, W.P., Mena, R., Gardea, J. and Pingatore, N. (1997). Lack of bioaccumulation of heavy metals in an arthropod community in the northern Chihuahuan Desert. J. Kans. Ent. Soc. 70, 329-34.

    Google Scholar 

  • Maier, K.J. and Knight, A.W. (1993). Comparative acute toxicity and bioconcentration of selenium by the midge Chironomus decorus exposed to selenate, selenite, and seleno-DL-methionine. Arch. Environ. Contam. Toxicol. 25, 365-70.

    Google Scholar 

  • Malchow, D.E., Knight, A.W. and Maier, K.J. (1995). Bioaccumulation and toxicity of selenium in Chironomus decorus larvae fed a diet of seleniferous Selenastratum capricornutum. Arch. Environ. Contam. Toxicol. 29, 104-9.

    Google Scholar 

  • Martin-Romero, F.J., Kryukov, G.V., Lobanov, A.V., Carlson, B.A., Lee, V.N., Gladyshev, V.N. and Hatfield, D.L. (2001). Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J. Biol. Chem. 276, 29798-804.

    Google Scholar 

  • Metcalf, C.L. and Flint, W.P. (1962). Destructive and Useful Insects, Their Habits and Control, San Francisco, CA: McGraw-Hill.

    Google Scholar 

  • Pearson, A.C., Sevacherian, V., Ballmer, G.P., Vail, P.V. and Henneberry, T.J. (1989). Spring annual hosts of five noctuid pests in the Imperial Valley of California (Lepidoptera: Noctuidae). J. Kans. Entomol Soc. 61, 464-70.

    Google Scholar 

  • Peterson, A. (1962). Larvae of Insects, an Introduction to Nearctic Species, Part 1: Lepidoptera and Plant-Infesting Hymenoptera, Ann Arbor, MI: Edwards Brothers.

    Google Scholar 

  • Presser, T.S. and Ohlendorf, H.M. (1987). Biogeochemical cycling of selenium in the San Joaquin Valley, California. Environ. Manag. 11, 805-21.

    Google Scholar 

  • Presser, T.S., Sylvester, M.A. and Low, W.H. (1994). Bioaccumulation of selenium from natural geologic sources in western states and its potential consequences. Environ. Manag. 18, 423-36.

    Google Scholar 

  • Santolo, G.M. and Yamamoto, J.T. (1997). Prediction of Selenium Exposure and Hazards for Terrestrial Birds. 18th Annual Meeting, 16–20 November, San Francisco: Society of Environmental Toxicology and Chemistry.

    Google Scholar 

  • Santolo, G.M. and Yamamoto, J.T. (1999). Selenium in blood of predatory birds from Kesterson Reservoir and other areas in California. J. Wildlife Manag. 63, 1273-81.

    Google Scholar 

  • Schuler, C.A., Anthony, R.G. and Ohlendorf, H.M. (1990). Selenium in wetlands and waterfowl foods at Kesterson Reservior, California, 1984. Arch. Environ. Contam. Toxicol. 19, 845-53.

    Google Scholar 

  • Simmons, T.W., Jamall, I.S. and Lockshin, R.A. (1988). Accumulation, distribution, and toxicity of selenium in the adult housefly Musca domestica. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 91, 559-64.

    Google Scholar 

  • Simmons, T.W., Jamall, I.S. and Lockshin, R.A. (1989a). Selenium modulates peroxidation in the absence of glutathione peroxidase in Musca domestica. Biochem. Biophys. Res. Commun. 165, 158-63.

    Google Scholar 

  • Simmons, T.W., Jamall, I.S. and Lockshin, R.A. (1989b). Selenium-independent glutathione peroxidase activity associated with glutathione S-transferase from the housefly, Musca domestica. Comp. Bio. Physiol. 94, 323-27.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1995). Biometry: The Principles and Practice of Statistics in Biological Research, 887pp. New York, NY: W. H. Freeman and Co.

    Google Scholar 

  • StatView. (2000–2001). Version 5.0.1. Cary, NC: SAS Institute.

  • Thomas, B.V., Knight, A.W. and Maier, K.J. (1999). Selenium bioaccumulation by the water boatman Trichocorixa reticulata (Guerin-Meneville). Arch. Environ. Contam. Toxicol. 36, 295-300.

    Google Scholar 

  • Tracy, M.L. and Möller, G. (1990). Continuous flow vapor generation for inductively coupled argon plasma spectrometric analysis. Part I. Selenium. J. Assoc. Off. Anal. Chem. 73, 404-10.

    Google Scholar 

  • Trumble, J.T., Kund, G.S. and White, K.K. (1998). Influence of form and quantity of selenium on the development and survival of an insect herbivore. Environ. Poll. 101, 175-82.

    Google Scholar 

  • Vickerman, D.B. and Trumble, J.T. (1999). Feeding preferences of Spodoptera exigua in response to form and concentration of selenium. Arch. Insect. Biochem. Physiol. 42, 64-73.

    Google Scholar 

  • Vickerman, D.B., Shannon, M.C., Bañuelos, G.S., Grieve, C.M. and Trumble, J.T. (2002a). Evaluation of Atriplex lines for selenium accumulation, salt tolerance and suitability for a key agricultural insect pest. Environ. Poll. 120, 463-73.

    Google Scholar 

  • Vickerman, D.B., Young, J.K. and Trumble, J.T. (2002b). Effect of Se-treated alfalfa on development, survival, feeding and oviposition preferences of Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 31, 953-9.

    Google Scholar 

  • Wu, L., Chen, J., Tanji, K.K. and Bañuelos, G.S. (1995). Distribution and biomagnification of selenium in a restored upland contaminated from agricultural drainage water. Environ. Tox. Chem. 14, 733-42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danel B. Vickerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickerman, D.B., Trumble, J.T. Biotransfer of Selenium: Effects on an Insect Predator, Podisus maculiventris . Ecotoxicology 12, 497–504 (2003). https://doi.org/10.1023/B:ECTX.0000003036.81351.31

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ECTX.0000003036.81351.31

Navigation