Skip to main content
Log in

Quantitative Trait Loci Analyses for Meristic Traits in Oncorhynchus mykiss

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Meristic trait variation among species and populations has long been used as the basis for identification and classification of fishes. Within Oncorhynchus mykiss, there is considerable variation in meristic characters such as numbers of vertebrae, lateral line scales, fin rays, gill rakers, and pyloric caeca. In our laboratory the Oregon State University (OSU) rainbow trout and the Clearwater River (CW) steelhead trout clonal lines, produced by androgenesis, exhibit significant differences in values for meristic traits, making quantitative trait locus (QTL) analysis of these meristic characters possible. Our objective was to determine the number, location, and effects of QTL associated with meristic characters in order to test two hypotheses: (1) that QTL for different meristic traits co-localize to the same linkage group and (2) that meristic trait QTL co-localize to the same linkage group as a previously identified development rate QTL. Doubled haploid individuals, produced by androgenesis from sperm from an F1 hybrid between the OSU and CW lines, were used to evaluate the joint segregation of each meristic phenotype and Amplified Fragment Length Polymorphic marker genotypes. Composite interval mapping revealed QTL for six of the seven traits analyzed. One QTL each for scales above the lateral line and for gill rakers co-localized to the same position. Only one QTL for scales above the lateral line co-localized to the same region as that for the development rate QTL, but a greater map resolution is necessary to determine if these loci are truly the same. We failed to detect pleiotropy for most meristic trait QTL. Our results suggest that different major loci are associated with variation in each meristic character and that the expression of these loci may be influenced by maternal and external environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, G.W. 1961. Causes and significance of morphological variation in fishes. System. Zool. 10: 105–117.

    Google Scholar 

  • Basten, C.J., B.S. Weir & Z.-B. Zeng. 1994. Zmap-a QTL cartographer. pp. 65–66. In: C. Smith, J.S. Gavora, B. Benkel, J. Chesnais, W. Fairfull, J.P. Gibson, B.W. Kennedy & E.B. Burnside (ed.) Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, Vol. 22, 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada.

  • Basten, C.J., B.S. Weir & Z.-B. Zeng. 2002. QTL Cartographer, Version 1.16. Department of Statistics, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Behnke, R.J. 1992. Native trout of western North America. American Fisheries Society Monograph 6, Bethesda, MD. 275 pp.

  • Bergot, P., J.M. Blanc & A.M. Escaffre. 1981. Relationship between number of pyloric caeca and growth in rainbow trout (Salmo gairdneri Richardson). Aquaculture 22: 81–96.

    Article  Google Scholar 

  • Bost, B., D. de Vienne, F. Hospital, L. Moreau & C. Dillmann, 2001. Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects. Genetics 157: 1773–1787.

    CAS  Google Scholar 

  • Brunelli, J.P., B.D. Robison & G.H. Thorgaard. 2001. Ancient and recent duplications of the rainbow trout Wilms' tumor gene. Genome 44: 455–462.

    Article  CAS  Google Scholar 

  • Buddington, R.K. & J.M. Diamond. 1986. Aristotle revisited: The function of pyloric caeca in fish. Proc. Natl. Acad. Sci. 83: 8012–8014.

    CAS  Google Scholar 

  • Churchill, G.A. & R.W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    CAS  Google Scholar 

  • Danzmann, R.G. & M.M. Ferguson. 1990. Developmental events. pp. 281–311. In: D.H. Whitmore (ed.) Electrophoretic and Isoelectric Focusing Techniques in Fisheries Management, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Doerge, R.W. & G.A. Churchill. 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294.

    CAS  Google Scholar 

  • Ferguson, M.M., K.L. Knudsen, R.G. Danzmann & F.W. Allendorf. 1988. Developmental rate and viability of rainbow trout with a null allele at a lactate dehydrogenase locus. Biochem. Genet. 26: 177–189.

    Article  CAS  Google Scholar 

  • Ferguson, M.M. & A.P. Liskauskas. 1995. Heritability and evolution of meristic variation in a naturalized population of brook char (Salvelinus fontinalis). Nordic J. Freshw. Res. 71: 217–228.

    Google Scholar 

  • Fowler, J.A. 1970. Control of vertebral number in teleosts-an embryological problem. Quart. Rev. Biol. 45: 148–167.

    Article  Google Scholar 

  • Gabriel, M.L. 1944. Factors affecting the number and form of vertebrae in Fundulus heteroclitus. J. Exp. Zool. 95: 105–147.

    Article  Google Scholar 

  • Garside, E.T. 1966. Developmental rate and vertebral number in salmonids. J. Fish. Res. Board Can. 23: 1537–1551.

    Google Scholar 

  • Hubbs, C.L. & K.F. Lagler. 1956. Fishes of the Great Lakes Region, University of Michigan Press, Ann Arbor. 186 pp.

    Google Scholar 

  • Kirpichnikov, V.S. 1981. Genetic Bases of Fish Selection, Springer-Verlag, New York. 410 pp.

    Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow & M.J. Daly. 1987. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  CAS  Google Scholar 

  • Leary, R.F., F.W. Allendorf & K.L. Knudsen. 1984. Major morphological effects of a regulatory gene: pgm1-t in rainbow trout. Mol. Biol. Evol. 1: 183–194.

    CAS  Google Scholar 

  • Leary, R.F., F.W. Allendorf & K.L. Knudsen. 1985. Inheritance of meristic variation and the evolution of developmental stability in rainbow trout. Evolution 39: 308–314.

    Google Scholar 

  • Leary, R.F., F.W. Allendorf & K.L. Knudsen. 1992. Genetic, environmental, and developmental causes of meristic variation in rainbow trout. Acta Zool. Fenn. 191: 79–95.

    Google Scholar 

  • Lindsey, C.C. 1955. Evolution of meristic relations in the dorsal and anal fin supports of teleost fishes. Trans. R. Soc. Can. Sec. 5, Vol. 49, Ser. III: 35–49.

    Google Scholar 

  • Lindsey, C.C. 1988. Factors controlling meristic variation. pp. 197–274. In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 11B, Academic Press, New York.

    Google Scholar 

  • Lindsey, C.C., A.M. Brett & D.P. Swain. 1984. Responses of vertebral numbers in rainbow trout to temperature changes during development. Can. J. Zool. 62: 391–396.

    Google Scholar 

  • Lynch, M. & B. Walsh. 1998. Genetics and Analysis of Quantitative Traits, Sinauer Associates, Sunderland, MA. 980 pp.

    Google Scholar 

  • MacGregor, R.B. & H.R. MacCrimmon. 1977a. Evidence of genetic and environmental influences on meristic variation in the rainbow trout, Salmo gairdneri Richardson. Environ. Biol. Fish. 1: 25–33.

    Article  Google Scholar 

  • MacGregor, R.B. & H.R. MacCrimmon. 1977b. Meristic variation among world hatchery stocks of rainbow trout, Salmo gairdneri Richardson. Environ. Biol. Fish. 1: 127–143.

    Article  Google Scholar 

  • Mottley, C.McC. 1934. The effect of temperature during development on the number of scales in the Kamloops trout, Salmo kamloops Jordan. Contrib. Can. Biol. 8: 253–263.

    Google Scholar 

  • Nichols, K.M., W.P. Young, R.G. Danzmann, B.D. Robison, C. Rexroad, M. Noakes, R.B. Phillips, P. Bentzen, I. Spies, K. Knudsen, F.W. Allendorf, B.M. Cunningham, J. Brunelli, H. Zhang, S. Ristow, R. Drew, K.H. Brown, P.A. Wheeler & G.H. Thorgaard. (2003). A consolidated genetic linkage map for rainbow trout (Oncorhynchus mykiss). Animal Genet. 34: 102–115.

    CAS  Google Scholar 

  • Northcote, T.G. & R.J. Paterson. 1960. Relationship between the number of pyloric caeca and length of juvenile rainbow trout. Copeia 1960: 248–250.

    Google Scholar 

  • Parrott, A.W. 1934. The variability and growth of the scales of brown trout (Salmo trutta) in New Zealand. Trans. New Zeal. Inst. 63: 497–516.

    Google Scholar 

  • Ristow, S.S., L.D. Grabowski, C. Ostberg, B. Robison & G.H. Thorgaard. 1998. Development of long-term cell lines from homozygous clones of rainbow trout. J. Aquat. Animal Health 10: 75–82.

    Google Scholar 

  • Robison, B.D., P.A. Wheeler & G.H. Thorgaard. 1999. Variation in development rate among clonal lines of rainbow trout (Oncorhynchus mykiss). Aquaculture 173: 131–141.

    Article  Google Scholar 

  • Robison, B.D., P.A. Wheeler, K. Sundin, P. Sikka & G.H. Thorgaard. 2001. Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). J. Hered. 92: 16–22.

    Article  CAS  Google Scholar 

  • Sakamoto, T., R.G. Danzmann, K. Gharbi, P. Howard, A. Ozaki, S.K. Khoo, R.A. Woram, N. Okamoto, M.M. Ferguson, L.-E. Holm, R. Guyomard & B. Hoyheim. 2000. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics 155: 1331–1345.

    CAS  Google Scholar 

  • Smith, C.L. & R.M. Bailey. 1961. Evolution of dorsal fin supports of percoid fishes. Papers Mich. Acad. Sci. 46: 345–363.

    Google Scholar 

  • Voorrips, R.E. 2002. MapChart: Software for the graphical presentation of linkage maps and QTL. J. Hered. 93: 77–78.

    Article  CAS  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau. 1995. AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407–4414.

    CAS  Google Scholar 

  • Young, W.P., P.A. Wheeler & G.H. Thorgaard. 1995. Asymmetry and variability of meristic characters and spotting in isogenic lines of rainbow trout. Aquaculture 137: 67–76.

    Article  Google Scholar 

  • Young, W.P., P.A. Wheeler, R.D. Fields & G.H. Thorgaard. 1996. DNA fingerprinting confirms isogenicity of androgenetically derived rainbow trout lines. J. Hered. 87: 77–81.

    CAS  Google Scholar 

  • Young, W.P., P.A. Wheeler, V.H. Coryell, P. Keim & G.H. Thorgaard. 1998. A detailed genetic linkage map of rainbow trout produced using doubled haploids. Genetics 148: 839–850.

    CAS  Google Scholar 

  • Zeng, Z.-B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457–1468.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nichols, K.M., Wheeler, P.A. & Thorgaard, G.H. Quantitative Trait Loci Analyses for Meristic Traits in Oncorhynchus mykiss . Environmental Biology of Fishes 69, 317–331 (2004). https://doi.org/10.1023/B:EBFI.0000022905.72702.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EBFI.0000022905.72702.0e

Navigation