Skip to main content
Log in

Genetic Structure of Wild Chinook Salmon Populations of Southeast Alaska and Northern British Columbia

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Allozyme variation was used to examine population genetic structure of adult chinook salmon, Oncorhynchus tshawytscha, collected between 1988 and 1993 from 22 spawning locations in Southeast Alaska and northern British Columbia. Thirty-five loci and two pairs of isoloci were variable, and of these, 25 loci and one pair of isoloci expressed the most abundant allele with a frequency of less than or equal to 0.95 in at least one collection. A neighbor-joining (NJ) tree of genetic distances defined five regional groups: (1) King Salmon River (the only island collection), which has large allelic frequency differences from other populations in this study; (2) heterogeneous coastal populations from southern southeast Alaska; (3) transmountain collections from the Taku and Stikine Rivers on the eastern side of the coastal mountain range; (4) Chilkat River in northern Southeast Alaska; and (5) northern coastal Southeast Alaska, which consists of the Situk River and the Klukshu River, a tributary of the Alsek River. A second NJ tree that included collections from the Yukon River and British Columbia did not reveal any strong genetic similarity between Southeast Alaska and the Yukon River. The data suggest that Southeast Alaska may have been colonized from both northern and southern refugia following the last glaciation — a period of sufficient time to allow for isolation by distance to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebersold, P.B., G.A. Winans, D.J. Teel, G.B. Milner & F.M. Utter. 1987. Manual for Starch Gel Electrophoresis: A Method for the Detection of Genetic Variation, U.S. Department of Commerce, NOAA Technical Report NMFS 61. 19 pp.

  • Baichtal, J., G. Streveler & T. Fifield. 1997. The Geological, Glacial and Cultural History of Southern Southeast, Alaska Geographic, Vol. 24, No. 1, Anchorage: Alaska Geographical Society. 96 pp.

    Google Scholar 

  • Cavalli-Sforza, L.L. & A.W.F. Edwards. 1967. Phylogenetic analysis: Models & estimation procedures. Evolution 21: 550–570.

    Google Scholar 

  • Chakraborty,R. & O. Leimar. 1987.Variation within a subdivided population. pp. 89–120. In: N. Ryman & F.M. Utter (ed.) Population Genetics and Fishery Management, University of Washington Press, Seattle.

    Google Scholar 

  • Clayton, J.W. & D.N. Tretiak. 1972. Amino citrate buffer for pH control of starch gel electrophoresis. J. Fish. Res. Board Can. 29: 1169–1172.

    CAS  Google Scholar 

  • Gharrett, A.J., S.M. Shirley & G.R. Tromble. 1987. Genetic relationships among populations of Alaskan chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 44: 765–774.

    Google Scholar 

  • Gharrett, A.J. & M.A. Thomason. 1987. Genetic changes in pink salmon (Oncorhynchus gorbuscha) following their introduction into the Great Lakes. Can. J. Fish. Aquat. Sci. 44: 787–792.

    Google Scholar 

  • Hardy, G.H. 1908. Mendelian proportions in a mixed population. Science 28: 49–50.

    Google Scholar 

  • Harris, H. & D.A. Hopkinson. 1976. Handbook of Enzyme Electrophoresis in Human Genetics, American Elsevier, New York. 120 pp.

    Google Scholar 

  • Hawkins, S.L., N.V. Varnavskaya, E.A. Matzak, V.V. Efremov, C.M. Guthrie III, R.L. Wilmot, H. Mayama, F. Yamazaki & A.J. Gharrett. 2002. Population structure of odd-broodline Asian pink salmon and its contrast to the even-broodline structure.J. Fish Biol. 60: 370–388.

    Article  Google Scholar 

  • Healey, M.C. 1991. Life history of chinook salmon (Oncorhynchus tshawytscha). pp. 311–394. In: C. Groot & L. Margolis (ed.) Pacific Salmon Life Histories, University of British Columbia Press, Vancouver.

    Google Scholar 

  • Heard, W., R. Burkett, F. Thrower & S. McGee. 1995. A review of chinook salmon resources in Southeast Alaska and development of an enhancement program designed for minimal hatchery-wild stock interaction. pp. 21–37. In: H.L. Schramm, Jr. & R.G. Piper (ed.) 15th International Symposium and Workshop on Uses and Effects of Cultured Fishes in Aquatic Ecosystems, Albuquerque, NM (U.S.A.), 12-17 Mar 1994, American Fisheries Society, Bethesda.

    Google Scholar 

  • Holmes, R.S. & C.J. Masters. 1970. Epigenetic interconversion of the multiple forms of mouse liver catalase. FEBS Lett. 11: 45–48.

    Article  CAS  Google Scholar 

  • IUBMBNC (International Union of Biochemistry and Molecular Biology, Nomenclature Committee). 1992. Enzyme Nomenclature 1992, Academic Press, Orlando, Florida. 864 pp.

    Google Scholar 

  • Johnson, S.W., J.F. Thedinga & K.V. Koski. 1992. Life history ofjuvenile ocean-type chinook salmon(Oncorhynchus tshawytscha) in the Situk River, Alaska. Can. J. Fish. Aquat. Sci. 49: 2621–2629.

    Google Scholar 

  • Kerr, F.A. 1948. Taku River map-area, British Columbia. Geol. Surv. Can. Mem. 248. 84 pp.

  • Lindsey, C.C., K. Patalas, R.A. Bodaly & C.P. Archibald. 1981. Glaciation and the physical, chemical, and biological limnology of Yukon lakes. Can. Tech. Rep. Fish. Aquat. Sci. 966: 37 pp.

  • Markert, C.L. & I. Faulhauber. 1965. Lactate dehydrogenase isozyme patterns of fish. J. Exp. Zool. 159: 319–332.

    Article  CAS  Google Scholar 

  • Rassmussen, C., C.O. Ostberg, D.R. Clifton, J.L. Holloway & R.J. Rodriguez. 2003. Identification of a genetic marker that discriminates ocean-type and stream-type chinook salmon in the Columbia River basin. Trans. Am. Fish. Soc. 132: 131–142.

    Google Scholar 

  • Rice, W.R. 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Google Scholar 

  • Ridgway, G.J. & S.W. Sherburne & R.D. Lewis. 1970. Polymorphisms in the serum esterases of Atlantic herring. Trans. Am. Fish. Soc. 99: 147–151.

    Article  CAS  Google Scholar 

  • Roff, D.A. & P. Bentzen. 1989. The statistical analysis of mito-chondrial DNA polymorphisms: Π2 and the problem of small samples. Mol. Biol. Evol. 6: 539–545.

    CAS  Google Scholar 

  • Saitou, N. & M. Nei. 1987. The neighbor-joining method: A new method for constructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  Google Scholar 

  • Schaal, B.A. & W.W. Anderson. 1974. An outline of techniques for starch gel electrophoresis of enzymes from the American oyster (Crassostrea virginica) Gmelin. Georgia Mar. Sci. Cent. Tech. Rep. 74–3.

  • Shaklee, J., F. Allendorf, D. Morizot & G. Whitt. 1990. Genetic nomenclature for protein-coding loci in fish. Trans. Am. Fish. Soc. 119: 2–15.

    Article  CAS  Google Scholar 

  • Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279.

    Google Scholar 

  • Sokal, R.R. & F.J. Rohlf. 1981. Biometry, 2nd edition, W.H. Freeman, San Francisco. 859 pp.

    Google Scholar 

  • Teel, D.J., G.B. Milner, G.A.Winans & W.S. Grant. 2000. Genetic population structure and origin of life-history types in chinook salmon in British Columbia, Canada. Trans. Am. Fish. Soc. 129: 194–209.

    Article  Google Scholar 

  • Unwin, M.J. & T.P. Quinn. 1993. Variation in life history patterns among New Zealand chinook salmon (Oncorhynchus tshawytscha) populations. Can. J. Fish. Aquat. Sci. 50: 1168–1175.

    Google Scholar 

  • Waples, R.S. 1990. Temporal changes of allele frequency in Pacific salmon: Implications for mixed-stock fishery analysis. Can. J. Fish. Aquat. Sci. 47: 968–976.

    Google Scholar 

  • Weir, B.S. & C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.

    Google Scholar 

  • Wright, S. 1931. Evolution in Mendelian populations. Genetics 28: 97–159.

    Google Scholar 

  • Zhivotovsky, L.A., A.J. Gharrett, A.J. MacGregor, M.K. Glubokovsky & M.W. Feldman. 1994. Gene differentiation in Pacific salmon (Oncorhynchus sp.): Facts and models with respect to pink salmon (O. gorbuscha). Can. J. Fish. Aquat. Sci. 51(Suppl. 1): 223–232.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guthrie, C.M., Wilmot, R.L. Genetic Structure of Wild Chinook Salmon Populations of Southeast Alaska and Northern British Columbia. Environmental Biology of Fishes 69, 81–93 (2004). https://doi.org/10.1023/B:EBFI.0000022879.88245.d6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EBFI.0000022879.88245.d6

Navigation