Skip to main content
Log in

An Algorithm for Solving a Phase Transition Problem in a Multicomponent System

  • Published:
Differential Equations Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Ufimtsev, V.B. and Achkurin, R.Kh., Fiziko-khimicheskie osnovy zhidkofazovoi epitaksii (Physical Chemical Foundations of Liquid-Phase Epitaxy), Moscow, 1983.

  2. Samarskii, A.A. and Vabishchevich, P.N., Computational Heat Transfer. Vol. 1-2. Mathematical Modeling, Wiley, 1995.

    Google Scholar 

  3. Sell, H.E. and Muller, G., J. of Crystal Growth, 1989, vol. 97, pp. 194–200.

    Google Scholar 

  4. Denisov, I.A., Lakeenkov, V.M., Mazhorova, O.S., and Popov, Yu.P., Mathematical Modeling of the Epitaxial Growth of Solid Solutions CdYHg1−Y Te from the Liquid Phase, Preprint IAM, Moscow, 1992, no. 65.

  5. Andreev, V.M., Dolginov, L.M., and Tret'yakov, D.K., Zhidkofazovaya epitaksiya v itekhnologii poluprovodnikovykh priborov (Liquid-Phase Epitaxy in Semiconductor Technology), Moscow, 1975.

  6. Mazhorova, O.S., Popov, Yu.P., and Sakharchuk, A.S., On a Boundary Value Problem for a System of Parabolic Equations, Preprint IAM RAS, Moscow, 1996, no. 107.

  7. Mazhorova, O.S., Popov, Yu.P., and Sakharchuk, A.S., Differents. Uravn., 1997, vol. 33, no. 7, pp. 946–954.

    Google Scholar 

  8. Samarskii, A.A. and Nikolaev, E.S., Metody resheniya setochnykh uravnenii (Methods for the Solution of Difference Equations), Moscow, 1978.

  9. Samarskii, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction to Theory of Difference Schemes), Moscow, 1971.

  10. Samarskii, A.A. and Popov, Yu.P., Raznostnye metody resheniya zadach gazovoi dinamiki (Difference Methods for the Solution of Problems of Gas Dynamics), Moscow, 1992.

  11. Roache, P.J., Computational Fluid Dynamics, Albuquerque: Hermosa Publishers, 1976. Translated under the title Vychislitel'naya gidrodinamika, Moscow, 1980.

    Google Scholar 

  12. Ermakov, S.V., Mazhorova, O.S., and Popov, Yu.P., The Construction of Difference Schemes for Parabolic Equations with a Small Parameter Multiplying the Highest Derivative, Preprint IAM RAS, Moscow, 1990, no. 89.

  13. Ermakov, S.V., Mazhorova, O.S., and Popov, Yu.P., Differents. Uravn., 1992, vol. 28, no. 10, pp. 1810–1821.

    Google Scholar 

  14. Goncharov, A.L. and Fryazinov, I.V., On the Construction of Monotone Difference Schemes for Navier Stokes Equations on Nine-Point Stencils, Preprint IAM RAS, Moscow, 1986, no. 93.

  15. Crossley, I. and Small, M.B., J. of Crystal Growth, 1974, vol. 27, pp. 35–48.

    Google Scholar 

  16. Bakirova, O.I., in Matematicheskoe modelirovanie. Poluchenie monokristallov I poluprovodnikovykh struktur (Mathematical Modeling. The Production of Monocrystalls and Semiconductor Structures), Moscow, 1986, pp. 142–158.

  17. Kimura, M., Qin, Z., and Dost, S., J. of Crystal Growth, 1996, vol. 158, pp. 231–240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazhorova, O.S., Popov, Y.P. & Shcheritsa, O.V. An Algorithm for Solving a Phase Transition Problem in a Multicomponent System. Differential Equations 40, 1051–1059 (2004). https://doi.org/10.1023/B:DIEQ.0000047035.96793.be

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:DIEQ.0000047035.96793.be

Keywords

Navigation