Skip to main content
Log in

Detection of Murine Intestinal Adenomas Using Targeted Molecular Autofluorescence

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

There is a significant need for noninvasive methods of evaluating dysplastic and neoplastic lesions in the luminal gastrointestinal tract. We have optimized an approach based on autofluorescence to study dysplastic adenomatous polyps in Apcmin/+ mice. We made recordings from both normal intestinal mucosa and from polyps using a xenon lamp-based fiberoptic device. Seventy-eight polyps in 11 mice revealed an increase in mean autofluorescence intensity ratios of 1.29 ± 0.04 (72 small intestinal polyps; P < 0.0001) and 1.28 ± 0.05 (6 colon polyps; P = 0.0016). Serial measurements of autofluorescence discriminated polyps from normal mucosa with a sensitivity, verified histologically, of 95%. To understand the chemical basis for increased autofluorescence, we examined the tryptophan content of intestinal polyps and the adjacent normal mucosa in a small subset of animals. The findings revealed an increased concentration of tryptophan in polyps (990 ± 240 ng/mg) compared to normal mucosa (720 ± 150 ng/mg; P = 0.03). In conclusion, these findings suggest that autofluorescence intensity increases in the setting of intestinal neoplasia and can be used to detect adenomas in the mouse intestine in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Harras A: Cancer rates and risks. Bethesda, MD, NCI, pp:9–24, 1996

    Google Scholar 

  2. Gong F, Swain P, Mills T: Wireless endoscopy. Gastrointest Endosc 51:725–729, 2000

    Google Scholar 

  3. Kapadia CR, Cuttruzola WF, O'Brien KM, Stetz ML, Enriquez, Deckelbaum LI: Laser-induced fluorescence spectroscopy of human colonic mucosa: detection of adenomatous transformation. Gastroenterology 90:150–157, 1990

    Google Scholar 

  4. Mourant JR, Boyer JD, Johnson TM, Lacey JA, Bigio IJ: Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System. SPIE Proc 2387:210–217, 1995

    Google Scholar 

  5. Backman V, Wallace MB, Perelman LT, Arendt JT, Gurjar R, Muller MG, Zhang Q, Zonios G, Kline E, McGillician T, Shapshay S, Valdez T, Badizadegan K, Crawford JM, Fitzmaurice M, Kabani S, Levin HS, Seiler M, Dasari RR, Itzkan I, VanDam J, Feld MS: Detection of preinvasive cancer cells. Nature 406:35–36, 2000

    Google Scholar 

  6. Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, Dasari RR, Feld M: Imaging human epithelial properties with polarized light scattering properties. Nature Med 7:1245–1248, 2001

    Google Scholar 

  7. Feld MS, Manoharan R, Salenius J, Orenstein-Carndona J, Roemer TJ, Brennan JF, Dasari RR, Wang Y: Detection and characteriszation of human tissue lesions with neat infra-red Raman spectroscopy. SPIE Proc 2388:99–104, 1995.

    Google Scholar 

  8. Cothren RM, Richards-Kortum R, Sivak MV Jr, et al.: Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy. Gastroint Endosc 36:105–111, 1990

    Google Scholar 

  9. Schomacker KT, Frisoli JK, Compton CC, Flotte TJ, Richter JM, Deutsch TF, Nishioka NS: Gastroenterology 102:1155–1160, 1992

    Google Scholar 

  10. Panjehpour M, Overholt BF, Vo-Dinh, et al.: Endoscopic fluorescence detection of high-grade dysplasia in Barrett's esophagus. Gastroenterology 111:93–101, 1996

    Google Scholar 

  11. Haringsma J, Tytgat GNJ, Yano H, Iishi H, Tatsuta M, Ogihara T, Watanabe H, Sato N, Norman Marcon N, Wilson BC, Cline RW: Autofluorescence endoscopy: Feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology. Gastrointest Endosc 53:642–650, 2001

    Google Scholar 

  12. Mayinger B, Horner P, Jordan M, Gerlach C, Horbach T, Hohenberger W, Hahn EG: Light-induced autofluorescence spectroscopy for tissue diagnosis of GI lesions. Gastrointest Endosc 52:395–400, 2000

    Google Scholar 

  13. Wang TD, Crawford JM, Feld MS, Wang Y, Itzkan I, Van Dam J: In vivo idnetificationo f colonic dysplasia using fluorescence endoscopic imaging. Gastrointest Endosc 49:447–455, 1999

    Google Scholar 

  14. Romer TJ, Fitzmaurice M, Cothren RM, Richards-Kortum R, Petras R, Sivak MV, Kramer JR: Laser-induced fluorescence microscopy of normal colon and dysplasia in colonic adenomas: Implications for spectroscopic diagnosis. Am J Gastroenterol 90:81–87, 1995

    Google Scholar 

  15. Schomacker KT, Frisioli JK, Compton CC, Flotte TJ, Richter JM, Nishioka NS, Deutsch TF: Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential. Lasers Surg Med 12:63–78, 1992

    Google Scholar 

  16. Abe S, Izuishi K, Tajiri H, Kinoshita T, Matsuoka T: Correlation of in vitro autofluorescence images with histopathologic findings in stomach cancer. Endoscopy 32:281–286, 2000

    Google Scholar 

  17. Banerjee B, Agarwal S, Miedema B, Perez R, Chandrasekhar HR: Use of a shorter wavelength autofluorescent band to separate adenomatous from hyperplastic polyps of the colon. Gastrointest Endosc 51:AB149, 2000

    Google Scholar 

  18. Banerjee B, Chandrasekhar HR: Use of a single autofluorescence emission ratio for the detection of colonic neoplasia. Gastrointest Endosc 55:AB129, 2002

    Google Scholar 

  19. Banerjee B, Agarwal S, Chandrasekhar HR: Variation in autofluorescence intensity of the normal colon with implications for cancer surveillance. Gastrointest Endosc 53:AB185, 2001

    Google Scholar 

  20. Shoemaker AR, Gould KA, Luongo C, Moser AR, Dove WF: Studies of neoplasia in the min mouse. Biochim Biophsy Acta 1332:F25–F48, 1997

    Google Scholar 

  21. Moser AR, Pilot HC, Dove WF: A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science247:322–324, 1990

    Google Scholar 

  22. Dietrich WF, Lander ES, Smith JS, Moser AR, Gould KA, Luongo C, Borenstien N, Dove W: Genetic identification of Mom-1, a major modifier locus affecting Min-induced intestinal neoplasia in the mouse. Cell 75:631–639, 1993

    Google Scholar 

  23. Moolenbeek C, Ruitenberg EJ: The “Swiss Roll”: a simple technique for histological studies of rodent intestine. Lab Anim 15:57–59, 1981

    Google Scholar 

  24. Simpson TJ, Neuberger MR, Liu TY: Complete amino acid analysis of proteins from a single hydrolysate. J Biol Chem251:1936–40, 1976

    Google Scholar 

  25. Banerjee B, Miedema B, Chandrasekhar HR: Advantages of using a shorter wavelength autofluorescence band in colonic neoplasia and inflammation. Gastrointest Endosc 4:AB60, 1999

    Google Scholar 

  26. Marten K, Bremer C, Khazaie K, Sameni M, Sloane M, Tung C, Weissleder R: Detection of dysplastic intestinal adenomas using enzyme-sensing molecular beacons in mice. Gastroenterology 122:406–414, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, B., Henderson, J.O., Chaney, T.C. et al. Detection of Murine Intestinal Adenomas Using Targeted Molecular Autofluorescence. Dig Dis Sci 49, 54–59 (2004). https://doi.org/10.1023/B:DDAS.0000011602.02496.76

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:DDAS.0000011602.02496.76

Navigation