Skip to main content
Log in

The Structure of Substorm Activations in the Quasi-Trapping Region

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Based on a large number of measurements of the magnetic field and energetic particles onboard the CRRES satellite and on ground-based measurements we describe the fine structure of the first several minutes of the expansion activation of a substorm. The main result is that we have found a fast enhancement of the flux of energetic ions immediately before the beginning of substorm dipolization of the magnetic field. This effect was not known earlier, and the enhancement is invisible from the ground during auroras. We suggest that the appearance of an excess flux of energetic ions has a triggering effect on the local expansion activation of a substorm. The model of a current meander is put forward, which explains the generation of an inductance electric field, current wedge, and other effects of the explosive onset of a substorm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Akasofu, S.-I., Polar and Magnetospheric Substorms, Dordrecht: D. Reidel, 1968.

  2. Isaev, S.I. and Pudovkin, M.I., Polar aurorae and magnetospheric processes, Leningrad: Nauka, 1972.

    Google Scholar 

  3. Pudovkin, M.I., Kozellov, V.P., Lazutin, L.L., et al., Fizicheskie osnovy prognozirovaniya magnitosfernykh vozmushchenii(Physical Principles of Forecasting Magnetospheric Disturbances), Leningrad: Nauka, 1977.

    Google Scholar 

  4. Rostoker, G., Akasofu, S.-I., Foster, J.C., et al., Magnetospheric Substorms-Definition and Signatures, J. Geophys. Res., 1980, vol. 85, pp. 1663–1668.

    Google Scholar 

  5. Rostoker, G., Akasofu, S.-I., Baumjohann, W., et al., The Roles of Direct Input of Energy from the Solar Wind and Unloading of Stored Magnetotail Energy in Driving Magnetospheric Substorms, Space Sci. Rev.,1987, vol. 46, pp. 93–111.

    Google Scholar 

  6. Elphinstone, R.D., Murphree, J.S., and Gogger, L.L., What Is a Global Auroral Substorm?, Rev. Geophys., 1996, vol. 34, pp. 169–232.

    Article  Google Scholar 

  7. Mishin, V.M., Samsonov, V.P., Popov, G.V., and Saifudinova, T.I., Three Phases of Magnetospheric Substorms and Zones of Corpuscular Injections into the Ionosphere, Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa, no. 19, part 2, Irkutsk, 1971, pp. 31–37.

  8. Mishin, V.M., Saifudinova, T., Bazarzhapov, A., et al., Two Distinct Substorm Onsets, J. Geophys. Res., vol. 106, no. A7, pp. 13105–13118.

  9. Baker, D.N., Pulkkinen, T.J., Angelopoulos, V., et al., Neutral Line Model of Substorms: Past Results and Present View, J. Geophys. Res., 1996, vol. 101, p. 12975.

    Article  Google Scholar 

  10. Hones, E.W., Jr., Plasma Flow in Magnetotail and Its Implications for Substorm Theories, in Dynamics of the Magnetosphere, Akasofu, S.-I., Ed., 1978, vol. 78, pp. 545–562.

  11. Lui, A.T., Lopez, R.E., et al., A Case Study of Magneto-tail Current Sheet Disruption and Diversion, Geophys. Res. Lett., 1988, vol. 15, pp. 721–724.

    Google Scholar 

  12. Lui, A.T., Observed Features in Current Disruption and Their Implications to Existing Theories, in Space Plasmas: Coupling between Small and Medium Processes, vol. 86 of Geophysical Monographs, AGU, 1995, pp. 149–162.

    Google Scholar 

  13. Lui, A.T., Particle Simulation of the Cross-Field Current Instability in a Thin Current Sheet, Sixth Intern. Conf. on Substorms, Seattle, 2002, pp. 25–32.

  14. Samson, J.C., MacAulay, A., Rankin, R., et al., Substorm Intensifications and Resistive Shear Flow-Ballooning Instabilities in the Near-Earth Magnetotail, Third Intern. Conf. on Substorms (ICS-3), Versailles, France, 1996, ESA, SP-389, 3, pp. 399–404.

    Google Scholar 

  15. Roux, A., Perreault, P., Robert, P., et al., Plasma Sheet Instability Related to the Westward Traveling Surge, J. Geophys. Res., 1991, vol. 96, pp. 17697–17707.

    Google Scholar 

  16. Vampola, A. and Korth, A., Electron Drift Echoes in the Inner Magnetosphere, Geophys. Res. Lett., 1993, vol. 19, p. 625.

    Google Scholar 

  17. Friedel, R.H.W., Korth, A., Reeves, G.D., and Belian, R., Origin of Energetic Particle Injections at Substorm Onset as Measured by the CRRES Spacecraft between 4 and 7 R E and Los Alamos Geostationary Satellites, Proc. of the Second Intern. Conf. on Substorms, 1994, no. 2, pp. 571–576.

  18. Rasinkangas, R., Sergeev, V., Remser, G., et al., Current Disruption Signatures at Substorm Onset Observed by CRRES, Intern. Conf. on the Substorms-2, Fairbanks, Alaska, 1994, pp. 595–600.

  19. Perry, C.H. et al., Statistical Survey of Dispersionless Substrom Injections Observed by the CREES MICS Ion Spectrometer, Proc. of the Third Intern. Conf. on Substorms, 1996, no. 3, pp. 567–572.

  20. Maynard, N.C., Burke, W.J., Basinska, E.M., et al., Dynamics of the Inner Magnetosphere near Times of Substorm Onsets, J. Geophys. Res., 1996, vol. 101, pp. 7705–7736.

    Article  Google Scholar 

  21. Lazutin, L.L., Rasinkangas, R., and Kozelova, T.V., Observations of Substorm Fine Structure, Ann. Geophys., 1998, pp. 775–786.

  22. Kozelova, T.V., Lazutin, L.L., and Kozelov, B.V., Dipolization and Disturbance Currents in the Magnetosphere according to the CRRESSatellite Data, Geomagn. Aeron., 1999, vol. 39, no. 1, pp. 15–26.

    Google Scholar 

  23. Lazutin, L.L., Structure of the Auroral Magnetosphere and Explosive Processes of a Magnetospheric Substorm, in Fizika okolozemnogo kosmicheskogo prostranstva(Physics of Near-Earth Space), Apatity: Polar Geophys. Inst., Apatity, 2000, pp. 145–194.

    Google Scholar 

  24. Lazutin, L., Borovkov, L.P., Kozelova, T.V., et al., Investigation of the Conjugasy between Auroral Breakup and Energetic Electron Injection, J. Geophys. Res., 2000, vol. 105, no. A8, p. 18504.

  25. Kozelova, T.V., Kozelov, B.V., and Lazutin, L.L., Substorm Large Impulsive Electric Fields Observed by CRRES, Substorm-5, St. Petersburg, 2000, p. 146.

  26. Lazutin, L., Korth, A., and Kozelova, T., Fast Bursts of High Energy Protons and Their Role in Triggering of the Substorm Onset Instability, Sixth Intern. Conf. on Substorms, Seattle, 2002, pp. 340–346.

  27. Kozelova, T.V., Lazutin, L.L., and Kozelov, B.V., Energetic Particle Bursts before the Main Substorm Injection, Adv. Space Res, 2002, vol. 30, no. 7, pp. 1805–1808.

    Article  Google Scholar 

  28. Singer, H.J., Sullivan, W.P., Anderson, P., et al., Fluxgate Magnetometer on the Combined Release and Radiation Effects Satellite (CRRES), J. of Spacecraft and Rockets, 1992, vol. 29, no. 4, pp. 599–601.

    Google Scholar 

  29. Korth, A., Kremser, G., Wilken, B., et al., Electron and Proton Wide-Angle Spectrometer (EPAS) on the CRRESSpacecraft, J. Spacecraft and Rockets, 1992, vol. 29, pp. 609–613.

    Google Scholar 

  30. McIlwain, C.E., Substorm Injection Boundaries, in Magnetospheric Physics, McCormac, B.M., Ed., Dordrecht: D. Reidel, 1974, pp. 143–154.

    Google Scholar 

  31. Winckler, J.R., Peterson, L., Arnoldy, R.L., and Hoffman, R.A., X-Rays from Visible Aurorae at Minneapolis, Phys. Rev., 1958, vol. 110, pp. 1221–1231.

    Article  Google Scholar 

  32. Barcus, J.R., Balloon Observations on the Relationship of Energetic Electrons to Visual Aurora and Auroral Absorption, J. Geophys. Res., 1965, vol. 70, p. 2135.

    Google Scholar 

  33. Lazutin, L.L., Rentgenovskoe izluchenie avroral'nykh elektronov i dinamika magnitosfery(X-Ray Emission of Auroral Electrons and Dynamics of the Magnetosphere), Leningrad: Nauka, 1979.

    Google Scholar 

  34. Ohtani, S., Takahashi, K., Zanetti, L.J., et al., Initial Signatures of Magnetic Field and Energetic Particle Fluxes at Tail Reconfiguration: Explosive Growth Phase, J. Geophys. Res., 1992, vol. 97, pp. 9311–19324.

    Google Scholar 

  35. Kornilova, T.A., Pudovkin, M.I., and Starkov, G.V., Fine Structure of Aurorae near Polar Boundary of the Auroral Bulge during Breakup Active Phase, Geomagn. Aeron., 1990, vol. 30, pp. 150–258.

    Google Scholar 

  36. Pudovkin, M.I., Zaitseva, S.A., Kornilova, T.A., and Pellinen, R.I., Dynamics of Aurorae in the Region of Equatorial Edge of Auroral Zone, Geomagn. Aeron., 1995, vol. 35, pp. 47–54.

    Google Scholar 

  37. Ohtani, S., Earthward Expansion of Tail Current Disruption: Dual-Satellite Study, J. Geophys. Res., 1998, vol. 103, no. 4, pp. 6815–6825.

    Article  Google Scholar 

  38. Roux, A., Generation of Field-Aligned Current Structures at Substorm Onset, Proc. ESA Workshop on Future Missions in Solar, Heliosphere, and Space Plasma Physics, Garmisch-Partenkirchen, Germany, 30 April-3 May, 1985, ESA SP-235, p. 151.

    Google Scholar 

  39. Krall, N.A. and Trivelpiece, A.W., Principles of Plasma Physics, McGraw-Hill, 1973. Translated under the title Osnovy fiziki plazmy, Moscow: Nauka, 1975.

  40. Shepherd, G.G., Bostrom, R., Derblom, H., et al., Plasma and Field Signatures of a Poleward Propagating Auroral Precipitation Observed at the Foot of the GEOS-2Field Line, J. Geophys. Res., 1980, vol. 85, no. 9, p. 4587.

    Google Scholar 

  41. Robert, P., Gendrin, R., Perraut, S., et al., GEOS-2Identification of Rapidly Moving Current Structures in the Equatorial Outer Magnetosphere during Substorm, J. Geophys. Res., 1984, vol. 89, no. 2, pp. 819–840.

    Google Scholar 

  42. Voronkov, I., Rankin, R., Frycz, P., et al., Coupling of Shear Flow and Pressure Gradient Instabilities, J. Geophys. Res., 1997, vol. 102, no. 5, pp. 9639–9650.

    Article  Google Scholar 

  43. Ohtani, S., Takahashi, K., Higuchi, T., Lui, A.T.Y., Spence, H.E., and Fennel, J.F., AMPTE/CCE-SCATHASimultaneous Observations of Substorm-Associated Magnetic Fluctuations, J. Geophys. Res., 1998, vol. 103, no. 3, pp. 4671–4682.

    Article  Google Scholar 

  44. Kirsch, E., Krimigis, S.M., Sarris, E.T., et al., Possible Evidence for Large, Transient Electric Field in the Magnetotail from Oppositely Directed Anisotropies of Energetic Protons and Electrons, Geophys. Res. Lett.,1997, vol. 4, no. 4, pp. 137–140.

    Google Scholar 

  45. Fedorova, N.I., Tsirs, V.I., and Lazutin, L.L., Impulsive Increase of Bright Hidrogen Emission before the Onset of an Active Substorm, Geomagn. Aeron., 1988, vol. 28, p. 87.

    Google Scholar 

  46. Heikkila, W.J. and Pellinen, R.J., Localized Induced Electric Field within the Magnetotail, J. Geophys. Res., 1977, vol. 82, p. 1610.

    Google Scholar 

  47. Pellinen, R.J. and Heikkila, W.J., Energization of Charged Particles to High Energies by an Induced Substorm Electric Field within the Magnetotail, J. Geophys. Res., 1978, vol. 83, pp. 1544–1550.

    Google Scholar 

  48. Pellinen, R.J. and Heikkila, W.J., Inductive Electric Fields in the Magnetotail and Their Relation to Auroral and Substorm Phenomena, Space Sci. Rev., 1984, vol. 37, pp. 1–61.

    Article  Google Scholar 

  49. Pritchett, P.L. and Coroniti, F.V., The Challenge for Kinetic Simulations of Substorm Growth and Onset, Sixth Intern. Conf. on Substorms, Seattle, Washington, 2002, pp. 189–196.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazutin, L.L., Kozelova, T.V. The Structure of Substorm Activations in the Quasi-Trapping Region. Cosmic Research 42, 309–330 (2004). https://doi.org/10.1023/B:COSM.0000039730.53471.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COSM.0000039730.53471.ac

Keywords

Navigation