Skip to main content
Log in

Gravitational Convection of a Liquid Mixture in a Horizontal Cylindrical Gap at Moderate Grashof Numbers

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Weak concentration convection which arises in the process of diffusion of impurities into the solvent filling a gap between two coaxial cylinders is studied experimentally. It is found that convective motion in the range of Grashof numbers 103–5 × 104 has a clear boundary-layer character. Near the inner porous cylinder, which is a source of impurity, a diffusion boundary layer passing into a two-dimensional convective plume is formed. The data on the structure and thickness of this layer are presented depending on the integral flux of impurity. The prospects of making an experiment in order to discover concentration convection onboard an orbital station are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dubovik, I.G., Nikitin, S.A., Polezhaev, V.I., et al., Convective Processes under Zero Gravity and Their Role in Problems of Space Technology, in Gidromekhanika i teplo-massoobmen v nevesomosti (Hydromechanics and Heat and Mass Transfer under Zero Gravity), Moscow: Nauka, 1982, pp. 61–71.

    Google Scholar 

  2. Polezhaev, V.I., Hydromechanics and Heat and Mass Transfer at Crystal Growth, Itogi Nauki Tekh., Ser.: Mekh. Zhid. Gaza, 1984, vol. 15, pp. 198–268.

    Google Scholar 

  3. Barmin, I.B., Bezdenezhnykh, N.A., Briskman, V.A., et al., Research Program for a Setup to Study Hydrodynamic Phenomena under Microgravity Conditions, Izv. Akad. Nauk SSSR, Ser. Fiz., 1985, vol. 49, no. 4, pp. 698–707

    Google Scholar 

  4. Polezhaev, V.I., Bello, N.A., Verezub, N.A., et al., Konvektivnye protsessy v nevesomosti (Convective Processes under Zero Gravity), Moscow: Nauka, 1991.

    Google Scholar 

  5. Avduevskii, V.S., Agafonov, M.S., Anfimov, N.A., et al., Experimental Study of Hydromechanics and Heat and Mass Transfer under Zero Gravity Using the Pion Instrument, in Tekhnologicheskie eksperimenty v nevesomosti (Technological Experiments under Zero Gravity), Sverdlovsk: Ural Otd. Akad. Nauk SSSR, 1983, pp. 15–29.

    Google Scholar 

  6. Avduevskii, V.S., Agafonov, M.S., Ermakov, S.V., et al., Numerical and Experimental Simulation of Thermal, Gravitational, and Thermal Capillary Convection in Gas-Liquid Systems under Conditions of Real Zero Gravity, in Chislennoe i eksperimental'noe modelirovanie gidrodinamicheskikh yavlenii v nevesomosti (Numerical and Experimental Modeling of Hydrodynamic Phenomena under Zero Gravity), Sverdlovsk, 1988, pp. 7–17.

  7. Azuma, H., et al., Preliminary Results from IML-2 Experiments on Influence of G-Jitter on Diffusion, Ninth European Symposium “Gravity-Dependent Phenomena in Physical Sciences” Abstracts, 1995, p. 74.

  8. Sazonov, V., Putin, G., and Babushkin, I., et al., On Measurements of Low-Frequency Microaccelerations onboard Orbital Station MIR with the Use of Thermal Convection Sensor “Dacon”, AIAA-paper 2000-0569, 38th Aerospace Sciences Meeting & Exibit., Reno, NV: American Institute of Aeronautics and Astronautics, 2000.

    Google Scholar 

  9. Babushkin, I.A., Bogatyrev, G.P., Glukhov, A.F., et al., Investigation of Thermal Convection and Low-Frequency Microgravity by the DACON Sensor aboard the MirOrbital Complex, Kosm. Issled., 2001, vol. 39, no. 2, pp. 161–170.

    Google Scholar 

  10. Babushkin, I.A., Bogatyrev, G.P., Glukhov, A.F., et al., Experimental Investigation of Thermal Convection onboard the MirOrbital Complex Using the DACON Instrument, Sb. trudov Rossiiskogo simpoziuma “Mekhanika nevesomosti. Itogi i perspektivy fundamental'nykh issledovanii gravitatsionno-chuvstvitel'nykh sistem” (Proc. of Russian Symposium “Mechanics of Zero Gravity: Results and Prospects of Fundamental Studies of Gravitationally Sensitive Systems”), Moscow: 2001, pp. 99–113.

  11. Babushkin, I.A., Bogatyrev, G.P., Glukhov, A.F., et al., Measurement of Low-Frequency Microaccelerations onboard Satellite Using a Convection Sensor, Sb. trudov Rossiiskogo simpoziuma “Mekhanika nevesomosti. Itogi i perspektivy fundamental'nykh issledovanii gravitatsionno-chuvstvitel'nykh sistem” (Proc. of Russian Symposium “Mechanics of Zero Gravity: Results and Prospects of Fundamental Studies of Gravitationally Sensitive Systems”), Moscow: 2001, pp. 123–136.

  12. Sarychev, V.F., Sazonov, V.V., Belyaev, M.Yu., et al., Microacceleration on the Board of the Earth's Artificial Satellites, Proc. of the First Int. Symp. on Hydromechanics and Heat/Mass Transfer in Microgravity, 1991, pp. 25–30.

  13. Avdeev, S.V., Ivanov, A.I., Polezhaev, V.I., et al., Experiments on the Far and Near Critical Fluid aboard “Mir” Station with the Use of “ALICE-1” Instrument, Proc. Joint 10th Europ. and 6th Russian Symp. on Physical Sciences in Microgravity, St. Petersburg, 1997, vol. 1, pp. 333–340.

    Google Scholar 

  14. Zyuzgin, A.V., Ivanov, A.I., Polezhaev, V.I., et al., Investigation of Near-Critical Fluid under Microgravity Conditions: Experiments onboard the MirStation and Numerical Simulation, Raketnaya tekhnika i kosmonavtika, 2000, vol. 19, pp. 56–63.

    Google Scholar 

  15. Zyuzgin, A.V., Ivanov, A.I., Polezhaev, V.I., et al., Convective Motions in Near-Critical Fluids under Real Zero-Gravity Conditions, Kosm. Issled., 2001, vol. 39, no. 2, pp. 188–199.

    Google Scholar 

  16. Polezhaev, V.I., Emel'yanov, V.M., Ivanov, A.I., et al., An Experimental Study of the Effect of Vibrations on Supercritical Fluid Transfer Processes under Microgravity Conditions, Kosm. Issled., 2001, vol. 39, no. 2, pp. 201–206.

    Google Scholar 

  17. Burshtein, B.I. and Kostarev, K.G., Podkovyrina Z.P., and Pshenichnikov A.F. Optical Instruments for Studying Heat and Mass Transfer under Zero Gravity, in Chislennoe i eksperimental'noe modelirovanie gidrodinamicheskikh yavlenii v nevesomosti (Numerical and Experimental Modeling of Hydrodynamic Phenomena under Zero Gravity), Sverdlovsk: Ural Otd. Akad. Nauk SSSR, 1988, pp. 108–112.

    Google Scholar 

  18. Sazonov, V.V., Belyaev, M.Yu., Efimov, M.I., et al., Determination of Quasistatic Component of Microaccelerations at the MirStation, Kosm. Issled., 2001, vol. 39, no. 2, pp. 136–137.

    Google Scholar 

  19. Lyubimova, T.P. and Myznikova, B.I., Mathematical Modeling of Convection in the Gap between Coaxial Cylinders under Conditions Close to Zero Gravity, Chislennoe i eksperimental'noe modelirovanie gidrodinamicheskikh yavlenii v nevesomosti (Numerical and Experimental Modeling of Hydrodynamic Phenomena under Zero Gravity), Sverdlovsk. Ural Otd. Akad. Nauk SSSR, 1988, pp. 38–56.

    Google Scholar 

  20. Gershuni, G.Z. and Lyubimov, D.V., Thermal Vibrational Convection, New York: Wiley, 1998.

    Google Scholar 

  21. Simakov, S.V. and Kundik, I.A., Influence of Basic Sources of Disturbances on Microgravity Conditions in the MirStation Modules as Estimated from the Data of the SAMS and MASU Instruments Kosm.Issled., 2001, vol. 39, no. 2, pp. 116–128.

    Google Scholar 

  22. Kosvintseva, M.K., Convective Boundary Layer near a Horizontal Cylinder with Permeable Boundaries, Gidrodinamika, Perm: Perm Gos. Univ., 1970, 216, no. 2, pp. 219–228.

    Google Scholar 

  23. Bogatyrev, G.P., Kostarev, K.G., and Lyubimova, T.P., Propagation of a Thermal Front between Coaxial Cylinders, in Chislennoe i eksperimental'noe modelirovanie gidrodinamicheskikh yavlenii v nevesomosti (Numerical and Experimental Modeling of Hydrodynamic Phenomena under Zero Gravity), Sverdlovsk: Ural Otd. Akad. Nauk SSSR, 1988, pp. 63–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostarev, K.G., Pshenichnikov, A.F. Gravitational Convection of a Liquid Mixture in a Horizontal Cylindrical Gap at Moderate Grashof Numbers. Cosmic Research 42, 109–116 (2004). https://doi.org/10.1023/B:COSM.0000025974.06699.8a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COSM.0000025974.06699.8a

Keywords

Navigation