Skip to main content
Log in

Calculation of Chlorin IR Spectrum by Density Functional Theory

  • Published:
Chemistry of Natural Compounds Aims and scope

Abstract

The structure, frequencies of normal vibrations, and absolute intensities of bands in the IR spectra of chlorin and four of its symmetric isotopomers were calculated using DFT/B3LYP with the 6-31G(d) basis set. The force field was scaled by the Pulay method in independent and dependent natural coordinates. A method for obtaining effective force fields without using experimental data for the frequencies of fundamental vibrations was proposed. It has been demonstrated that most vibrations of the porphyrin macrocycle have characteristic frequencies upon hydrogenation of the pyrrolenine ring and only 12 vibrations differed significantly. The IR spectra of chlorin and its isotopomers were modelled. Frequencies were assigned and normal vibrations were interpreted for the examined molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. P. Gurinovich, A. N. Sevchenko, and K. N. Solov?ev, Spectroscopy of Chlorophyll and Related Compounds [in Russian], Nauka i Tekhnika, Minsk (1968).

    Google Scholar 

  2. K. N. Solov?ev, L. L. Gladkov, A. S. Starukhin, and S. F. Shkirman, Spectroscopy of Porphyrins: Vibrational States [in Russian], Nauka i Tekhnika, Minsk (1985).

    Google Scholar 

  3. A. Grichine, A. Feofanov, T. Karmakova, N. Kazachkina, E. Pecherskih, R. Yakubovskaya, A. Mironov, M. Egret-Charlier, and P. Vigny, Photochem. Photobiol., 73, 267 (2001).

    Google Scholar 

  4. V. A. Kuz?mitskii, V. N. Knyukshto, V. I. Gael?, E. I. Zen?kevich, E. I. Sagun, N. A. Pukhlikova, V. S. Lebedeva, and A. F. Mironov, Zh. Prikl. Spektrosk., 70, 43 (2003).

    Google Scholar 

  5. S. F. Mason, J. Chem. Soc., 976 (1958).

  6. A. N. Sevchenko, K. N. Solov?ev, S. F. Shkirman, and M. V. Sarzhevskaya, Dokl. Akad. Nauk SSSR, 153, 1391 (1963).

    Google Scholar 

  7. L. L. Gladkov, N. M. Ksenofontova, K. N. Solov?ev, A. S. Starukhin, A. M. Shul?ga, and A. T. Gradyushko, Zh. Prikl. Spektrosk., 38, 598 (1983).

    Google Scholar 

  8. A. A. Jarzecki, P. M. Kozlowski, P. Pulay, B.-H. Ye, and X.-Y. Li, Spectrochim. Acta, Part A, 53, 1195 (1997).

    Google Scholar 

  9. P. M. Kozlowski, T. S. Rush III, A. A. Jarzecki, M. Z. Zgierski, B. Chase, C. Piffat, B.-H. Ye, X.-Y. Li, P. Pulay, and T. G. Spiro, J. Phys. Chem. A, 103, 1357 (1999).

    Google Scholar 

  10. T. Andruniow, M. Z. Zgierski, and P. M. Kozlowski, Chem. Phys. Lett., 331, 502 (2000).

    Google Scholar 

  11. J. Almlof, T. H. Fischer, P. G. Gassman, A. Ghosh, and M. Haser, J. Phys. Chem., 97, 10964 (1993).

    Google Scholar 

  12. J. G. Radziszewski, M. Nepras, V. Balaji, J. Waluk, E. Vogel, and J. Michl, J. Phys. Chem., 99, 14254 (1995).

    Google Scholar 

  13. P. M. Kozlowski, M. Z. Zgierski, and P. Pulay, Chem. Phys. Lett., 247, 379 (1995).

    Google Scholar 

  14. G. Rauhut and P. Pulay, J. Phys. Chem., 99, 3093 (1995).

    Google Scholar 

  15. A. P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996).

    Google Scholar 

  16. I. V. Tokmakov and V. A. Shlyapochnikov, Izv. Akad. Nauk, Ser. Khim., 2106 (1997).

  17. B. M. L. Chen and A. Tulinsky, J. Am. Chem. Soc., 94, 4144 (1972).

    Google Scholar 

  18. W.-Y. Huang, E. V. Riper, and L. W. Johnson, Spectrochim. Acta, Part A, 52, 761 (1996).

    Google Scholar 

  19. K. V. Berezin, O. D. Tatarenko, and V. V. Nechaev, Zh. Prikl. Spektrosk., 69, 462 (2002).

    Google Scholar 

  20. K. V. Berezin and V. V. Nechaev, Zh. Prikl. Spektrosk., 69, 699 (2002).

    Google Scholar 

  21. K. V. Berezin and V. V. Nechaev, Zh. Fiz. Khim., 77, 65 (2003).

    Google Scholar 

  22. K. V. Berezin, O. D. Tatarenko, and V. V. Nechaev, Zh. Fiz. Khim., 77, 121 (2003).

    Google Scholar 

  23. K. V. Berezin, V. V. Nechaev, and T. V. Krivokhizhina, Opt. Spektrosk., 94, 398 (2003).

    Google Scholar 

  24. V. I. Berezin and M. D. El?kin, Opt. Spektrosk., 37, 237 (1974).

    Google Scholar 

  25. K. V. Berezin and V. V. Nechaev, Zh. Prikl. Spektrosk., 70, 182 (2003).

    Google Scholar 

  26. M. J. Frisch, G. W. Trucks, and H. B. Schlegel, GAUSSIAN 03, Revision B.03, Gaussian, Inc., Pittsburgh, PA (2003).

    Google Scholar 

  27. K. V. Berezin and V. V. Nechaev, Zh. Prikl. Spektrosk., 70, 309 (2003).

    Google Scholar 

  28. K. V. Berezin and E. N. Tupitsyn, Zh. Prikl. Spektrosk., 70, 622 (2003).

    Google Scholar 

  29. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha, J. Am. Chem. Soc., 105, 7037 (1983).

    Google Scholar 

  30. Yu. N. Panchenko, Izv. Akad. Nauk, Ser. Khim., 800 (1996).

  31. Yu. N. Panchenko, J. Mol. Struct., 567-568, 217 (2001).

    Google Scholar 

  32. K. V. Berezin, Opt. Spektrosk., 94, 394 (2003).

    Google Scholar 

  33. H. Yoshida, A. Ehara, and H. Matsuura, Chem. Phys. Lett., 325, 477 (2000).

    Google Scholar 

  34. H. Yoshida, K. Takeda, J. Okamura, A. Ehara, and H. Matsuura, J. Phys. Chem. A, 106, 3580 (2002).

    Google Scholar 

  35. K. V. Berezin and V. V. Nechaev, Zh. Prikl. Spektrosk., 70, 558 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezin, K.V., Nechaev, V.V. Calculation of Chlorin IR Spectrum by Density Functional Theory. Chemistry of Natural Compounds 39, 540–548 (2003). https://doi.org/10.1023/B:CONC.0000018107.12252.b3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CONC.0000018107.12252.b3

Navigation