Skip to main content
Log in

Mean Force Potential between H3O+ and Cl Ions in Molecular Water Clusters: 1. Atmospheric Surface Layer Conditions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A method for calculating mean force potential for particles in systems with high potential barriers was developed. It was shown that the hydration of HCl resulted in the formation of molecular water clusters, which remained thermodynamically stable at 313 K. Two minima separated by the barrier were disclosed on the dependence of mean force potential between H3O+ and Cl ions on interionic spacing in a cluster. Based on the data obtained, a general kinetic model was proposed that explained experimental observations (in atmosphere) of a large population of stable molecular water clusters containing ion pairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Carlon, H.R., J. Appl. Phys., 1981, vol. 52, p. 3111.

    Google Scholar 

  2. Carlon, H.R., J. Appl. Phys., 1981, vol. 54, p. 2638.

    Google Scholar 

  3. Carlon, H.R., Appl. Opt., 1978, vol. 17, p. 3192.

    Google Scholar 

  4. Carlon, H.R., Appl. Opt., 1980, vol. 19, p. 2210.

    Google Scholar 

  5. Carlon, H.R., Appl. Opt., 1981, vol. 20, p. 1316.

    Google Scholar 

  6. Carlon, H.R., J. Chem. Phys., 1982, vol. 76, p. 5523.

    Google Scholar 

  7. Carlon, H.R., J. Chem. Phys., 1983, vol. 78, p. 1622.

    Google Scholar 

  8. Stakhanov, I.P., O fizicheskoi prirode sharovoi molnii (On the Physical Nature of Ball Lightning), Moscow: Energoizdat, 1985.

    Google Scholar 

  9. Stakhanov, I.P., Zh. Tekh. Fiz., 1976, vol. 46, p. 82.

    Google Scholar 

  10. Smirnov, B.M., Problema sharovoi molnii (The Problem of Ball Lightning), Moscow: Nauka, 1988.

    Google Scholar 

  11. Gudzenko, L.I., Derzhiev, V.I., and Yakovlenko, S.I., Tr. Fiz. Inst. im. P.N. Lebedeva, Akad. Nauk SSSR, 1980, vol. 120, p. 50.

    Google Scholar 

  12. Sinkevich, O.A., Teplofiz. Vys. Temp., 1997, vol. 35, pp. 651, 968.

    Google Scholar 

  13. Shevkunov, S.V., Dokl. Akad. Nauk, 2001, vol. 379, p. 181.

    Google Scholar 

  14. Grigoryan, S.S., Dokl. Akad. Nauk, 2002, vol. 385, p. 750.

    Google Scholar 

  15. Boyarchuk, K.A., Kononov, E.N., and Lyakhov, G.A., Pis'ma Zh. Tekh. Fiz., 1993, vol. 19, p. 67.

    Google Scholar 

  16. Elokhin, A.P. and Kononov, E.N., At. Energ., 1996, vol. 80, p. 129.

    Google Scholar 

  17. Didenko, A.N., Usov, Yu.P., Yushkov, Yu.G., et al., At. Energ., 1996, vol. 80, p. 47.

    Google Scholar 

  18. Shevkunov, S.V., Khim. Vys. Energ., 1999, vol. 33, p. 325.

    Google Scholar 

  19. Shevkunov, S.V. and Bauman, E.G., Mat. Model., 2000, vol. 12, p. 45.

    Google Scholar 

  20. Shevkunov, S.V. and Bauman, E.G., Khim. Fiz., 2001, vol. 20, p. 17.

    Google Scholar 

  21. Farman, J.C., Gardiner, B.G., and Shanklin, J.D., Nature(London), 1985, vol. 315, p. 207.

    Google Scholar 

  22. Solomon, S.M., Garcia, R.R., Rowland, F.S., and Wuebbles, D.J., Nature (London), 1986, vol. 321, p. 755.

    Google Scholar 

  23. Molina, M.J., Tso, T.L., Molina, L.T., and Wang, F.C.Y., Science (Washington, D. C.), 1987, vol. 238, p. 1253.

    Google Scholar 

  24. Clary, D.C., Science (Washington, D. C.), 1996, vol. 271, p. 509.

    Google Scholar 

  25. Shevkunov, S.V., Elektrokhimiya, 2002, vol. 38, p. 340.

    Google Scholar 

  26. Shevkunov, S.V., Pis'ma Zh. Eksp. Teor. Fiz.,2002, vol. 76, p. 828.

    Google Scholar 

  27. Shevkunov, S.V., Kolloidn. Zh., 2004, vol. 66, p. 248.

    Google Scholar 

  28. Shevkunov, S.V., Zh. Fiz. Khim., 2004, vol. 78 (in press).

  29. Widom, B., J. Chem. Phys., 1963, vol. 39, p. 2808.

    Google Scholar 

  30. Widom, B., J. Phys. Chem., 1982, vol. 86, p. 869.

    Google Scholar 

  31. Shevkunov, S.V., Martsinovskii, A.A., and Vorontsov-Vel'yaminov, P.N., Teplofiz. Vys. Temp., 1988, vol. 26, p. 246.

    Google Scholar 

  32. Shevkunov, S.V., Martsinovski, A.A., and Vorontsov-Velyaminov, P.N., Mol. Simul., 1990, vol. 5, p. 119.

    Google Scholar 

  33. Lyubartsev, A.P., Martsinovski, A.A., Shevkunov, S.V., and Vorontsov-Velyaminov, P.N., J. Chem. Phys., 1992, vol. 96, p. 1776.

    Google Scholar 

  34. Aqvist, J., J. Phys. Chem., 1990, vol. 94, p. 8021.

    Google Scholar 

  35. Wu, J.Z., Bratko, D., Blanch, H.W., and Prausnitz, J.M., J. Chem. Phys., 1999, vol. 111, p. 7084.

    Google Scholar 

  36. Ichitsuibo, T., Tanaka, K., Numakura, H., and Koiwa, M., Phys. Rev. B: Condens. Matter, 1999, vol. 60, p. 9198.

    Google Scholar 

  37. . Senger, B., Schaaf, P., Corti, D.S., et al., J. Chem. Phys., 1999, vol. 110, p. 6438.

    Google Scholar 

  38. Tomas-Oliveira, I. and Wodak, Sh.J., J. Chem. Phys., 1999, vol. 111, p. 8576.

    Google Scholar 

  39. Oh, K.J. and Zeng, X.C., J. Chem. Phys., 1999, vol. 110, p. 4471.

    Google Scholar 

  40. Shevkunov, S.V., Kolloidn. Zh., 2000, vol. 62, p. 569.

    Google Scholar 

  41. . Burgi, R., Lang, F., and VanGunsteren, W.F., Mol. Simul., 2001, vol. 27, p. 215.

    Google Scholar 

  42. Athenes, M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 66, p. 046 705.

    Google Scholar 

  43. Ferrario, M., Ciccotti, G., and Spohr, E., J. Chem. Phys.,2002, vol. 117, p. 4947.

    Google Scholar 

  44. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., J. Mol. Struct. (THEOCHEM), 2003, vol. 623, p. 221.

    Google Scholar 

  45. Lau, Y.K., Ikuta, S., and Kebarle, P., J. Am. Chem. Soc., 1982, vol. 104, p. 1462.

    Google Scholar 

  46. Arshadi, M., Yamdagni, R., and Kebarle, R., J. Phys. Chem., 1970, vol. 74, p. 1475.

    Google Scholar 

  47. Hiroaka, K., Mizuse, S., and Yamade, S., J. Phys. Chem., 1988, vol. 92, p. 3943.

    Google Scholar 

  48. Re, S., Osamura, Yo., and Suzuki, Y., J. Chem. Phys., 1998, vol. 109, p. 973.

    Google Scholar 

  49. Shevkunov, S.V. and Vegiri, A., J. Chem. Phys., 1999, vol. 111, p. 9303.

    Google Scholar 

  50. Shevkunov, S.V. and Vegiri, A., Mol. Phys., 2000, vol.98, p. 149.

    Google Scholar 

  51. Vegiri, A. and Shevkunov, S.V., J. Chem. Phys., 2000, vol. 113, p. 8521.

    Google Scholar 

  52. Zamalin, V.M., Norman, G.E., and Filinov, V.S., Metod Monte-Karlo v statisticheskoi termodinamike (The Monte Carlo Method in Statistical Thermodynamics), Moscow: Nauka, 1977.

    Google Scholar 

  53. Fizicheskie velichiny: Spravochnik (Physical Parameters: A Handbook),Grigor'ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

    Google Scholar 

  54. Arshadi, M. and Kebarle, P., J. Phys. Chem., 1970, vol. 74, p. 1483.

    Google Scholar 

  55. Kebarle, P., Searles, S.K., Zolla, A., et al., J. Am. Chem. Soc., 1967, vol. 89, p. 6393.

    Google Scholar 

  56. Degreve, L. and DaSilva, F.L.B., J. Chem. Phys., 1999, vol. 110, p. 3070.

    Google Scholar 

  57. Das, A.K. and Tembe, B.L., J. Chem. Phys., 1999, vol. 111, p. 7526.

    Google Scholar 

  58. Chialvo, A.A., Cummings, P.T., and Simonson, J.M., J. Chem. Phys., 2000, vol. 113, p. 8093.

    Google Scholar 

  59. Chialvo, A.A., Ho, P.C., Palmer, D.A., et al., J. Phys. Chem., B, 2002, vol. 106, p. 2041.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevkunov, S.V. Mean Force Potential between H3O+ and Cl Ions in Molecular Water Clusters: 1. Atmospheric Surface Layer Conditions. Colloid Journal 66, 495–505 (2004). https://doi.org/10.1023/B:COLL.0000037459.37224.71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COLL.0000037459.37224.71

Keywords

Navigation