Skip to main content
Log in

On the Theory of Structural Transformations in Magnetic Fluids

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Results of studying a new scenario of condensation phase transition in the ensemble of ferrofluid particles are reported. Phase transition in this ensemble starts with the formation of chain clusters. Chains whose length exceeds a certain critical value dependent on temperature and magnetic field undergo collapse and are transformed into very dense globules. The globule evolution leads to the separation of ferrofluid into two phases with different particle density. Initial (chain collapse) and final (equilibrium) stages of phase transition are investigated. Calculations of the critical length of a chain corresponding to its collapse, as well as the characteristics of dense phase at the final separation stage are in good agreement with the results of known experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rosensweig, R., Ferrohydrodynamics, Cambridge: Cambridge Univ. Press, 1985.

    Google Scholar 

  2. Blum, E.Ya., Maiorov, M.M., and Tzebers, A.O., Magnitnye zhidkosti (Magnetic Fluids), Riga: Zinatne, 1989.

    Google Scholar 

  3. Odenbach, S., Magnetoviscous Effects in Ferrofluids, Berlin: Springer-Verlag, 2002.

    Google Scholar 

  4. Hayes, C.F., J. Colloid Interface Sci., 1975, vol. 52, p. 239.

    Google Scholar 

  5. Hayes, C.F. and Hwang, S.R., J. Colloid Interface Sci., 1977, vol. 60, p. 239.

    Google Scholar 

  6. Peterson, E.A. and Krueger, A.A., J. Colloid Interface Sci., 1977, vol. 62, p. 24.

    Google Scholar 

  7. Bacri, J.-C. and Salin, D., J. Magn. Magn. Mater., 1983, vol. 62, p. 24.

    Google Scholar 

  8. Pshenichnikov, A.F. and Shurubor, I.Yu., Izv. Akad. Nauk SSSR, Ser. Fiz., 1987, vol. 51, p. 1081; Pshenichnikov, A.F., J. Magn. Magn. Mater., 1995, vol. 145, p. 139.

  9. Khizhenkov, P.K., Dorman, V.L., and Bar'yakhtar, F.G., Magn. Gidrodin., 1989, vol. 1, p. 35.

    Google Scholar 

  10. Bacri, J.-C., Perzynski, R., Salin, D., et al., J. Colloid Interface Sci., 1989, vol. 132, p. 43.

    Google Scholar 

  11. Tsebers, A.O., Magn. Gidrodin., 1982, vol. 2, p. 42.

    Google Scholar 

  12. Sano, K. and Doi, M., J. Phys. Soc. Jpn., 1983, vol. 52, p. 2810.

    Google Scholar 

  13. Morozov, K.I., Izv. Akad. Nauk SSSR, Ser. Fiz., 1987, vol. 51, p. 1073.

    Google Scholar 

  14. Buyevich, Y.A. and Ivanov, A.O., Physica A (Amsterdam), 1992, vol. 190, p. 276.

    Google Scholar 

  15. Caillol, J.M., J. Chem. Phys., 1993, vol. 98, p. 9835.

    Google Scholar 

  16. Van Leeuwen, M.E. and Smit, B., Phys. Rev. Lett., 1993, vol. 71, p. 3991.

    Google Scholar 

  17. Levesque, D. and Weis, J.J., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1994, vol. 49, p. 5131.

    Google Scholar 

  18. Stevens, M.J. and Grest, G.S., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1994, vol. 72, p. 3686.

    Google Scholar 

  19. Satoh, A., Chantre, R.W., Iand, S., and Coverdall, G.N., J. Colloid Interface Sci., 1996, vol. 181, p. 422.

    Google Scholar 

  20. Osipov, M.A., Teixeira, P.I.C., and Telo da Gama, M.M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1996, vol. 54, p. 2597.

    Google Scholar 

  21. Zubarev, A.Yu. and Iskakova, L.Yu., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 65, p. 061 406; Iskakova, L.Yu. and Zubarev, A.Yu., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2002, vol. 66, p. 041 405.

  22. De Gennes, P.-G. and Pincus, P.A., Phys. Condens. Matter, 1970, vol. 11, p. 189.

    Google Scholar 

  23. Jordan, P.G., Mol. Phys., 1973, vol. 25, p. 961; Mol. Phys., 1979, vol. 38, p. 769.

    Google Scholar 

  24. Tsebers, A., Magn. Gidrodin., 1974, vol. 2, p. 36.

    Google Scholar 

  25. Zubarev, A.Yu. and Iskakova, L.Yu., Zh. Eksp. Teor. Fiz., 1995, vol. 107, p. 1534; Phys. Rev. E.: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2000, vol. 61, p. 5415.

    Google Scholar 

  26. Lifshitz, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), Moscow: Nauka, 1979.

    Google Scholar 

  27. Landau, L.D. and Lifshitz, E.M., Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1982.

    Google Scholar 

  28. Hall, K.R., J. Chem. Phys., 1972, vol. 57, p. 2252.

    Google Scholar 

  29. Lekkerkerker, H.K., Poon, W.C.-K., Pusey, P.N., et al., Europhys. Lett., 1992, vol. 20, p. 559.

    Google Scholar 

  30. Buevich, Yu.A., Zubarev, A.Yu., and Ivanov, A.O., Kolloidn. Zh., 1992, vol. 54, p. 54; Zubarev, A.Yu., Kolloidn. Zh., 1995, vol. 57, p. 34.

  31. Tavares, J.M., Weis, J.J., and Telo da Gama, M.M., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, p. 438.

    Google Scholar 

  32. Ten Wolde, P.R., Oxtoby, D.W., and Frenkel, D., Phys. Rev. Lett., 1998, vol. 81, p. 3695.

    Google Scholar 

  33. Brenner, H.D. and Condiff, D.W., J. Colloid Interface Sci., 1980, vol. 47, p. 199.

    Google Scholar 

  34. Pokrovskii, V.N., Statisticheskaya mekhanika razbavlennykh suspenzii (Statistical Mechanics of Dilute Suspensions), Moscow: Nauka, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubarev, A.Y., Iskakova, L.Y. On the Theory of Structural Transformations in Magnetic Fluids. Colloid Journal 65, 703–710 (2003). https://doi.org/10.1023/B:COLL.0000009112.24619.ca

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COLL.0000009112.24619.ca

Keywords

Navigation