Skip to main content
Log in

Hybridization Between Canada Lynx and Bobcats: Genetic Results and Management Implications

Conservation Genetics Aims and scope Submit manuscript

Abstract

Hybridization between taxonomically similar species is an often-overlooked mechanism limiting the recovery of threatened and endangered species. We present molecular genetic data for the first time demonstrating that Canada lynx and bobcats hybridize in the wild. We verify that two microsatellite loci Lc106 and Lc110 have non-overlapping allele ranges between Canada lynx and bobcats, and that three putative lynx from Minnesota contain DNA from both bobcats and lynx. Additionally, we use a published test for the 16S rRNA region of mitochondrial DNA (mtDNA) to determine the maternal species; all hybrids had lynx mothers. Fifteen per cent (3/20) of our ‘putative lynx’ samples were hybrids, although these data are not from a representative sampling effort. Hybridization may be an under-appreciated factor limiting the distribution and recovery of lynx. The presence of hybrids is thus a new factor in the population management of both species with potential implications for hunting and trapping of bobcats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol., 16, 613–622.

    Google Scholar 

  • Aubry KB, Koehler GM, Squires JR (2000) Ecology of Canada lynx in Southern Boreal Forests. In: Ecology and Conservation of Lynx in the United States (eds. Ruggiero LF et al.), pp. 373–396. University Press of Colorado, Boulder, Colorado, USA.

    Google Scholar 

  • Avise JC, Bermingham E, Kessler LG, Saunders NC (1984) Characterization of mitochondrial DNA variability in a hybrid swarm between subspecies of bluegill sunfish (Lepomis macrochirus). Evolution, 385, 931–941.

    Google Scholar 

  • Barton N (2001) The role of hybridization in evolution. Mol. Ecol., 10, 551–568.

    PubMed  CAS  Google Scholar 

  • Buskirk SW, Ruggiero LF, Krebs CJ (2000) Habitat fragmentation and interspecific competition: Implications for lynx conservation. In: Ecology and Conservation of Lynx in the United States (eds. Ruggiero LF et al.), pp. 83–100. University Press of Colorado, Boulder, Colorado, USA.

    Google Scholar 

  • Carmichael LE, Clark W, Strobeck C (2000) Development and characterization of microsatellite loci from lynx (Lynx canadensis) and their use in other fields. Mol. Ecol., 9, 2197–2198.

    PubMed  CAS  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellow-stone wolves with error-prone noninvasive microsatellite genotypes. Mol. Ecol., 12, 2003–2009.

    PubMed  Google Scholar 

  • Dowling TE, Secor CL (1996) The role of hybridization and introgression in the diversification of animals. Annu. Rev. Ecol. Syst., 28, 593–619.

    Google Scholar 

  • Ernest HB, Penedo MCT, May BP, Syvanen M, Boyce WM (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: Genetic analysis using microsatellites and faecal DNA. Mol. Ecol., 9, 433–441.

    PubMed  CAS  Google Scholar 

  • Evett IW, Weir BS (1998) Interpreting DNA Evidence: Statistical Genetics for Forensic Scientists. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Federal Register (2000) Endangered and Threatened Wildlife and Plants; Determination of Threatened Status for the Contiguous US Distinct Population Segments of the Canada Lynx and Related Rule; Final Rule. Vol. 65, pp. 16051–16086.

    Google Scholar 

  • Federal Register (2003) Endangered and Threatened Wildlife and Plants; Reopening of Comment Period for Final Rule to list the contiguous United States Distinct Population Segment of the Canada lynx. Vol. 68, pp. 12611–12612.

    Google Scholar 

  • Forbes SH, Allendorf FW (1991) Associations between mitochondrial and nuclear genotypes in cutthroat trout hybrid swarms. Evolution, 45, 1332–1349.

    Google Scholar 

  • Gagneux P, Boesch C, Woodruff DS (1997) Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Mol. Ecol., 6, 861–868.

    PubMed  CAS  Google Scholar 

  • Goodman SJ, Barton NH, Swanson G, Abernethy K, Pemberton JM (1999) Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll, Scotland. Genetics, 152, 355–371.

    PubMed  CAS  Google Scholar 

  • Goossens B, Waits LP, Taberlet P (1998) Plucked hair samples as a source of DNA: Reliability of dinucleotide microsatellite genotyping. Mol. Ecol., 7, 1237–1241.

    PubMed  CAS  Google Scholar 

  • Johnson W, O’Brien SJ (1997) Phylogenetic reconstruction of the Felidae using 16S rRNA and NADH-5 mitochondrial genes. J. Mol. Evol., 44, S98–S116.

    PubMed  CAS  Google Scholar 

  • Leary RF, Allendorf FW, Forbes SH (1993) Conservation genetics of bull trout in the Columbia and Klamath River Drainages. Conserv. Biol., 7, 856–865.

    Google Scholar 

  • Mayr E (1972) Sexual selection and natural selection. In: Sexual Selection and the Descent of Man (ed. Campbell B.), pp. 87–104. Heinemann, London, England.

    Google Scholar 

  • McKelvey KS, Aubry KB, Ortega YK (2000) History and distribution of lynx in the contiguous United States. In: Ecology and Conservation of Lynx in the United States (eds. Ruggiero LF et al.), pp. 207–264. University Press of Colorado, Boulder, Colorado, USA.

    Google Scholar 

  • Mills LS, Citta JJ, Lair KP, Schwartz MK, Tallmon DA (2000) Estimating animal abundance using noninvasive DNA sampling: Promise and pitfalls. Ecol. Appl., 10, 283–294.

    Google Scholar 

  • Mills LS, Pilgrim K, Schwartz MK, McKelvey K (2001) Identifying lynx and other North American felids based on MtDNA analysis. Conserv. Genet., 1, 285–289.

    Google Scholar 

  • Mowat G, Paetkau D (2002) Estimating marten Martes americana population size using hair capture and genetic tagging. Wildlife Biol., 8, 201–209.

    Google Scholar 

  • Mowat G, Poole KG, O’Donoghue M (2000) Ecology of lynx in Northern Canada and Alaska. In: Ecology and Conservation of Lynx in the United States (eds. Ruggiero LF et al.), pp. 265–306. University Press of Colorado, Boulder, Colorado, USA.

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York, USA.

    Google Scholar 

  • Paetkau D (2003) An empirical exploration of data quality in DNA-based population inventories. Mol. Ecol., 12, 1375–1387.

    PubMed  CAS  Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst., 27, 83–109.

    Google Scholar 

  • Schwartz MK, Mills LS, McKelvey KS, Ruggiero LF, Allendorf FW (2002) DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature, 415, 520–522.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MK, Mills LS, Ortega Y, Ruggiero LF, Allendorf FW (2003) Landscape location affects genetic variation of Canada lynx. Mol. Ecol., 12, 1807–1816.

    PubMed  CAS  Google Scholar 

  • Slough BG, Mowat G (1996) Population dynamics of lynx in a refuge and interactions between harvested and unharvested populations. J. Wildlife Manage., 60, 946–961.

    Google Scholar 

  • Spruell P, Bartron M, Kanda N, Allendorf FW (2001) Detection of hybrids between bull trout (Salvelinus confluentus) and brook trout (Salvelinus fontinalis) using PCR primers complementary to interspersed nuclear elements. Copia, 4, 1093–1099.

    Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucl. Acids Res., 26, 3189–3194.

    Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: Look before you leap. Trends Ecol. Evol., 14, 323–327.

    PubMed  Google Scholar 

  • Tranah GJ, Bagley M, Agresti JJ, May B (2003) Development of codominant markers for identifying species hybrids. Conserv. Genet., 4, 537–541.

    CAS  Google Scholar 

  • Waits JL, Leberg PL (2000) Biases associated with population estimation using molecular tagging. Animal Conserv., 3, 191–199.

    Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines. Mol. Ecol., 10, 249–256.

    PubMed  CAS  Google Scholar 

  • Ward RMP, Krebs CJ (1985) Behavioral responses of lynx to declining snowshoe hare abundance. Can. J. Zool., 63, 2817–2824.

    Article  Google Scholar 

  • Werdelin L (1981) Evolution of lynxes. Ann. Zool. Fenn., 18, 37–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, M.K., Pilgrim, K.L., McKelvey, K.S. et al. Hybridization Between Canada Lynx and Bobcats: Genetic Results and Management Implications. Conserv Genet 5, 349–355 (2004). https://doi.org/10.1023/B:COGE.0000031141.47148.8b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COGE.0000031141.47148.8b

Navigation