Advertisement

Conservation Genetics

, Volume 5, Issue 1, pp 89–102 | Cite as

Phylogeography and subspecies assessment of vicuñas in Chile and Bolivia utilizing mtDNA and microsatellite markers: implications for vicuña conservation and management

  • Ronald J. SarnoEmail author
  • Lilian Villalba
  • Cristian Bonacic
  • Benito Gonzalez
  • Beatriz Zapata
  • David W. Mac Donald
  • Stephen J. O'Brien
  • Warren E. Johnson
Article

Abstract

The rearing and maintenance of wildvicuñas in semi-captivity for economicutilization is practiced mainly in Peru, butArgentina, Bolivia, and Chile are quicklydeveloping their own programs of economic use. Large scale rearing practices will likelyisolate populations and may foster selectivebreeding. In addition to these concerns, thereare also uncertainties about the distributionand validity of the currently recognizedsubspecies. To better understand the potentialimpact that economic utilization will have onthe vicuña, we describe the moleculargenetic variation among four populations andboth described subspecies. An analysis of 794~bp of mitochondrial DNA sequences (16s,cytochrome b genes, and mtDNA control region)revealed appreciable genetic diversity, low tomoderate levels of genetic differentiation, andrestricted gene flow with isolation by distanceamong populations. Analysis of microsatellitedata also indicated genetic differentiationamong populations. Past climatic and geologicevents, coupled with human history, have likelysubjected the vicuña to various episodes ofpopulation isolation and admixture. Therefore,we suggest that managers aim to ensure geneflow among adjoining populations, as observedat mtDNA and microsatellite loci, as well asmaintaining apparent restricted gene flow withisolation by distance among populationsseparated by great distances. Intensiverearing procedures like those being practicedin Peru will ultimately disrupt movements andmigration among wild populations. Furthermore,animals that are not exposed to predation byremaining inside fences, may overtime, loseportions of their behavioral repertoire thatenable them to recognize potentially dangeroussounds associated with the presence ofpredators. Therefore, we do not recommend thatanimals be placed behind fences as this couldlead to a loss of genetic and behavioraldiversity as well as halting natural ecologicalprocesses. If, however, vicuñas are placedbehind fences for commercial purposes (withlittle or no regard for the retention ofgenetic, and/or behavioral diversity as well asnatural population processes) then we suggestclose genetic monitoring of animals that are(will be) maintained in captivity.

camelid microsatellites mtDNA sequences ungulate Vicugna vicugna 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arroyo MK, Squeo F, Veit H, Cavieres L, Leon P, Belmonte E (1993) Flora and vegetation of Chilean Andes. In: II Simposio Internacional de Estudios Altiplanicos (ed. Raggi A), pp. 167–178. Universidad de Chile, Arica.Google Scholar
  2. Berger J (1997) Consequences of large carnivore loss and restoration. In: Behavioral Ecology and Conservation Biology (ed. Caro T), pp. 80–100. University of Chicago Press, Chicago.Google Scholar
  3. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368, 455–457.Google Scholar
  4. Boyce WM, Ramey RR, Rodwell TC, Rubin ES, Singer RS (1999) Population subdivision among desert bighorn sheep (Ovis canadensis) ewes revealed by mitochondrial DNA analysis. Mol. Ecol., 8, 99–106.Google Scholar
  5. Broders HG, Mahoney SP, Montevecchi WA, Davidson WS (1999) Population genetic structure and the effect of founder events on the genetic variability of moose, Alces alces, in Canada. Mol. Ecol., 8, 1309–1315.Google Scholar
  6. Cajal JL, Pujalte J, Reca A (1983) Resultados de los censos de camélidos silvestres en las reservas de San Guillermo (San Juan), aguna Brava (La Rioja) y Laguna Blanca (Catamarca). Report to the Xith Argentine Meeting of Ecology, Cordoba, Argentina.Google Scholar
  7. Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR (1993) Incidence and origin of null alleles in the (AC)n microsatellite markers. Amer. J. Human Genet., 52, 922–927.Google Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: A computer program to estimate gene genealogies. Mol. Ecol., 9, 1657–1659.Google Scholar
  9. Crandall KA (1996) Multiple interspecies transmissions of human and simian T-cell leukemia/lymphoma virus type I sequences. Mol. Biol. Evol., 13, 115–131.Google Scholar
  10. Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics, 134, 959–969.Google Scholar
  11. Dennler de la Tour G (1954) The Vicuña. Oryx, 2, 347–352.Google Scholar
  12. Dirección de Fauna y Flora Silvestres. República de Argentina (2002). Informe a la XXI Reunión Ordinaria del Convenio de la Vicuña. Oruro, Bolivia.Google Scholar
  13. Dirección General de Biodiversidad. (2002) Plan de Manejo de la Vicuña enBolivia. Ministerio de Desarrollo Sostenible y Planificación. La Paz, Bolivia, 55 pp.Google Scholar
  14. Dirección Nacional de Conservación de la Biodiversidad (1997) Censo nacional de la Vicuña en Bolivia: Gestion 1996. La Paz, Bolivia, 60 pp.Google Scholar
  15. Donnelly P, Tavaré S (1986) The ages of alleles and a coalescent. Adv. Appl. Prob., 18, 1–19.Google Scholar
  16. Eizirik E, Bonatto SL, Johnson WE, Crawshaw PG, Vié JC, Brousset DM, O'Brien SJ, Salzano FM (1998) Phylogeographic patterns and evolution of the mitochondrial DNA control region in two neotropical cats (Mammalia, Felidae). Jour. Mol. Evol., 47, 613–624.Google Scholar
  17. Eltringham SK, Jordan WJ (1981) The vicuña of the Pampa Galeras National Reserve. The conservation issue. In: Problems in Management of Locally Abundant Wild Animals (eds. Jewell PA, Holt S), pp. 277–289. Academic Press, New York.Google Scholar
  18. Engelhart A, Muller-Schwarze D (1995) Responses of beaver (Castor canadensisKuhl) to predator chemicals. J. Chem. Ecol., 21, 1349–1365.Google Scholar
  19. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.Google Scholar
  20. Forbes SH, Hogg JT, Buchanan FC, Crawford AM, Allendorf FW (1995) Microsatellite evolution in congeneric mammals: Domestic and Bighorn sheep. Mol. Biol. Evol., 12, 1106–1113.Google Scholar
  21. Franklin WL (1982) Biology, ecology, and relationship to man of the South American camelids. Special Publication Pymatuning Laboratory of Ecology, 6, 457–489.Google Scholar
  22. Franklin WL (1973) High, wild world of the vicuña. Nat. Geogr., 143, 76–91.Google Scholar
  23. Gilmore R (1950) Fauna and ethnozoology of South America. In: Handbook of South American Indians 6. Bureaus of American Ethnography Bulletin, 143, 345–464. Smithsonian Institute, Washington.Google Scholar
  24. Goldstein DB, Pollock DD (1997) Launching microsatellites: A review of mutation processes and methods of phylogenetic inference. Jour. Hered., 88, 335–342.Google Scholar
  25. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav., 28, 1140–1162.Google Scholar
  26. Grimwood IR (1969) Notes on the distribution and status of some Peruvian mammals 1968. American committee for International Wildlife Protection. New York Zoological Society Special Publication No., 21.Google Scholar
  27. Gutierrez-Espelata GA, Kalinowski SA, Boyce WM, Hedrick PW (2000) Genetic variation and population structure in desert bighorn sheep: Implications for conservation. Cons. Genet., 1, 3–15.Google Scholar
  28. Guo S, Thompson E (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biomet., 48, 361–372.Google Scholar
  29. Hartl DL, Clark AG (1997). Principles of Population Genetics. Sinauer, Sunderland.Google Scholar
  30. Hoelzel AR, Green A (1998) PCR protocols and population analysis by direct DNA sequencing and PCR-based DNA fingerprinting. In: Molecular Genetic Analysis of Populations (ed. Hoelzel AR), pp. 201–236. Oxford University, Oxford.Google Scholar
  31. Holm LE, Forchammer MC, Boomsma JJ (1999) Low genetic variation in muskoxen (Ovibos moschatus) from western Greenland using microsatellites. Mol. Ecol., 8, 675–679.Google Scholar
  32. Huelsenbeck JP, Hillis DM (1993) Success of phylogenetic methods in the four-taxon case. System. Biol., 42, 247–264.Google Scholar
  33. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. Jour. Mol. Evol., 32, 128–144.Google Scholar
  34. Kadwell M, Fernandez M, Stanley HF, Baldi R, Wheeler JC, Rosadio R, Bruford MW (2001) Genetic analysis reveals the wild ancestors of the llama and the alpaca. Proc. R. Soc. Lond., 268, 2575–2584.Google Scholar
  35. Koford CB (1957) The vicuña and the puna. Ecol. Monog., 27, 153–219.Google Scholar
  36. Kocher DM, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Nat. Acad. Sci., 86, 6196–6200.Google Scholar
  37. Koorey DJ, Bishop AG, McCaughan GW (1993) Allele nonamplification: A source of confusion in linkage studies employing microsatellite polymorphisms. Human Mol. Genet., 2, 289–291.Google Scholar
  38. Kumar S, Tamura K, Nei M (1993) MEGA, Version 1.1. Pennsylvania, Pennsylvania State University.Google Scholar
  39. Lang KD, Wang Y, Plante Y (1996) Fifteen polymorphic dinucleotide microsatellites in llamas and alpacas. Anim. Genet., 27, 293.Google Scholar
  40. Marshall T (2001) Cervus Version 2.0. University of Edinburgh.Google Scholar
  41. Marshall, TC, Slate, J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol., 7, 639–655.Google Scholar
  42. Maudet C, Miller C, Bassano B, Breitenmoser-Würsten C, Gauthier D, Obexer-Ruff G, Michallett J, Taberlet P, Luikart G (2002). Microsatellite DNA and recent statistical methods in wildlife conservation management: Applications in Alpine Ibex [Capra ibex (ibex)]. Mol. Ecol., 11, 421–436.Google Scholar
  43. Minch E (1997) Microsat 1.5d. http://lotka.stanford.edu/microsat. html.Google Scholar
  44. Molina JI (1782) Saggio Sulle Storia Naturale del Chile. Bologna.Google Scholar
  45. Moritz C (1994) Defining Evolutionary Significant Units for conservation. Trends Ecol. Evol., 9, 373–375.Google Scholar
  46. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  47. Norton M, Torres H (1980) Evaluation of Ground and Aerial Census Work on Vicuña in Pampa Galeras, Perú. WWF/IUCN Unpublished report. Gland, Switzerland.Google Scholar
  48. Owings DH, Leger DW (1980) Chatter vocalizaitons of California ground squirrels: Predator-and social role specificity. Z. Tierpsychol., 54, 163–184.Google Scholar
  49. Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci: A caution for parentage and population studies. Mol. Ecol., 4, 249–252.Google Scholar
  50. Posada D, Crandall KA, Templeton AR (2000) GeoDis: A program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol., 9, 487–488.Google Scholar
  51. Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinfor., 14, 817–818.Google Scholar
  52. Rabinovich JE, Capurro AF, Pessina LL (1991) Vicuña use and the bioeconomics of an Andean peasant community in Catamarca, Argentina. In: Neotropical Wildlife Use and Conservation (eds. Robinson JG, Redford KH), pp. 337–358. University of Chicago Press, Chicago.Google Scholar
  53. Rice WA (1989). Analyzing tables of statistical tests. Evol., 43, 223–225.Google Scholar
  54. Romero H, Rivera A, Fernández P (1997) Climatologia de la puna de Atacama y su relación con los recursos hidricos. In: El Altiplano, Ciencia y Conciencia de los Andes (ed. Charrier R), pp. 87–93. Universidad de Chile, Santiago.Google Scholar
  55. Saiki RK, Scharf S, Fallona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of B-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230, 1350–1354.Google Scholar
  56. Sambrook I, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  57. Sarno RJ, Franklin WL, O'Brien SJ, Johnson WE (2001) Patterns of mtDNA and microsatellite variation in an island and mainland population of guanacos in southern Chile. Anim. Cons., 4, 93–101.Google Scholar
  58. Sarno RJ, David VA, Franklin WL, O'Brien SJ, Johnson WE (2000) Development of microsatellite markers in the guanaco, Lama guanicoe: Utility for South American Camelids. Mol. Ecol., 9, 1922–1924.Google Scholar
  59. Schneider S, Kueffer JM, Roessli D, Excoffier L (2000) Arlequin Version 2.0: A Software for Population Genetics Data Analysis. University of Geneva, Switzerland.Google Scholar
  60. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.Google Scholar
  61. Slatkin M (1994) Linkage disequilibrium in growing and stable populations. Genet., 137, 331–336.Google Scholar
  62. Sullivan TP, Nordstrom LO, Sullivan DS (1985a) Use of predator odors as repellants to reduce feeding damage by herbivores. I. Showshoe hares. J. Chem. Ecol., 11, 903–919.Google Scholar
  63. Sullivan TP, Nordstrom LO, Sullivan DS (1985b) Use of predator odors as repellants to reduce feeding damage by herbivores. II. Black-tailed deer. J. Chem. Ecol., 11, 921–935.Google Scholar
  64. Swofford DL (1998) Phylogenetic Analysis Using Parsimony, Version 4.0b10. Illinois History Survey, Champaign.Google Scholar
  65. Templeton AR (1998) Nested clade analysis of phylogeographic data: Testing hypotheses about gene flow and population history. Mol. Ecol., 7, 381–397.Google Scholar
  66. Templeton AR (1994) 'Eve': Hypothesis compatibility versus hypothesis testing. Amer. Anthropol., 96, 141–147.Google Scholar
  67. Templeton AR (1993a) 'Eve' hypothesis: A genetic critique and reanalysis. Amer. Anthropol., 95, 51–72.Google Scholar
  68. Templeton AR (1993b) Nested clade analysis of phylogeographic data: Testing hypotheses about gene flow and population history. Mol. Ecol., 7, 381–397.Google Scholar
  69. Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population hisotry: A cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genet., 140, 767–782.Google Scholar
  70. Templeton AR, Crandall KA, Sing CF (1992) A statistical analysis of phenotypic associations with haplotypes inferred from from restgriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, 619–633.Google Scholar
  71. Thomas O (1917) Preliminary diagnosis of new mammals obtained by the Yale National Society Peruvian Expedition. Smithsonian Miscellaneous Collection, 68.Google Scholar
  72. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice. Nuc. Acids Res., 22, 4673–4680.Google Scholar
  73. Thompson LG, Mosley-Thompson E, Bolzan JF, Koci BR (1985) A 1500-Year Record of Tropical Precipitation in Ice Cores from the Quelccaya Ice Cap, Peru. Science, 229, 971–973.Google Scholar
  74. Torres H (2000) La conservación de la vicuña en el Parque Nacional Lauca: una visión retrospectiva de 1975 a 1985. In: Manejo Sustentable de la Vicuña y el Guanaco (eds. González B, Bas F, Tala C, Iriarte AW), pp. 19–24. Servicio Agrícola y Ganadero, Pontificia Universidad Católica de Chile, Fundación para la Innovación Agraria, Santiago, Chile.Google Scholar
  75. United States Fish & Wildlife Service (1999) Endangerd and threatened wildlife and plants; proposed reclassification of certain vicuña populations from endangered to threatened and a proposed special rule. Federal Register, 54, 47743–48757.Google Scholar
  76. Villalba L (1996) Programa Nacional de Conservación de la Vicuña. Report submitted to the Bolivian Dirección General de Biodiversidad, 39 pp.Google Scholar
  77. Ward RH, Frazier BL, Dew-Jager K, Pääbo S (1991) Extensive mitochondrial diversity within a single Amerindian tribe. Proc. Natl. Acad. Sci., 88, 8720–8724.Google Scholar
  78. Wheeler JC (1995) Evolution and present situation of the South American Camelidae. Biol. Jour. Linnean Soc., 54, 271–295.Google Scholar
  79. Wheeler JC, Fernandez M, Rosadio R., Hoces D, Kadwell M, Bruford MW (2000) Genetic Diversity and Management Implications for Vicuña Populations in Peru: Results of Grant #N251 of the Darwin Initiative for the Survival of Species. Final Report.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ronald J. Sarno
    • 1
    Email author
  • Lilian Villalba
    • 2
    • 3
  • Cristian Bonacic
    • 4
  • Benito Gonzalez
    • 4
  • Beatriz Zapata
    • 4
  • David W. Mac Donald
    • 3
  • Stephen J. O'Brien
    • 1
  • Warren E. Johnson
    • 1
  1. 1.Laboratory of Genomic DiversityNational Cancer InstituteFrederick
  2. 2.Colección Boliviana de FaunaLaPazBolivia
  3. 3.Wildlife Research, Conservation UnitOxford UniversityOxfordUnited Kingdom
  4. 4.Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileCasillaChile

Personalised recommendations