Skip to main content
Log in

The Dual Group of a Dense Subgroup

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

Throughout this abstract, G is a topological Abelian group and \(\hat G\) is the space of continuous homomorphisms from G into the circle group \({\mathbb{T}}\) in the compact-open topology. A dense subgroup D of G is said to determine G if the (necessarily continuous) surjective isomorphism \(\hat G \to \hat D\) given by \(h \mapsto h\left| D \right.\) is a homeomorphism, and G is determined if each dense subgroup of G determines G. The principal result in this area, obtained independently by L. Außenhofer and M. J. Chasco, is the following: Every metrizable group is determined. The authors offer several related results, including these.

1. There are (many) nonmetrizable, noncompact, determined groups.

2. If the dense subgroup D i determines G i with G i compact, then \( \oplus _i D_i \) determines Πi G i. In particular, if each G i is compact then \( \oplus _i G_i \) determines Πi G i.

3. Let G be a locally bounded group and let G + denote G with its Bohr topology. Then G is determined if and only if G + is determined.

4. Let non\(\left( {\mathcal{N}} \right)\) be the least cardinal κ such that some \(X \subseteq {\mathbb{T}}\) of cardinality κ has positive outer measure. No compact G with \(w\left( G \right) \geqslant non\left( {\mathcal{N}} \right)\) is determined; thus if \(\left( {\mathcal{N}} \right) = {\mathfrak{N}}_1 \) (in particular if CH holds), an infinite compact group G is determined if and only if w(G) = ω.

Question. Is there in ZFC a cardinal κ such that a compact group G is determined if and only if w(G) < κ? Is \(\kappa = non\left( {\mathcal{N}} \right)?\kappa = {\mathfrak{N}}_1 ?\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Amemiya and Y. KНmura: Ñber nicht-vollständige Montelräme. Math. Ann. 177 (1968), 273-277.

    Google Scholar 

  2. L. Auβenhofer: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. PhD. thesis. Universität Tübingen, 1998.

  3. L. Auβenhofer: Contributions to the duality theory of Abelian topological groups and to the theory of nuclear groups. Dissertationes Math. Vol. CCCLXXXIV. Warszawa, 1998.

  4. W. Banaszczyk: On the existence of exotic Banach-Lie groups. Ann. Math. 264 (1983), 485-493.

    Google Scholar 

  5. W. Banaszczyk: Additive Subgroups of Topological Vector Spaces. Lecture Notes in Mathematics Vol. 1466. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  6. T. Bartoszyński and H. Judah: Set Theory: on the Structure of the Real Line. A. K. Peters, Wellesley, 1990, pp. 546.

    Google Scholar 

  7. S. Berhanu, W. W. Comfort and J. D. Reid: Counting subgroups and topological group topologies. Pacific J. Math. 116 (1985), 217-241.

    Google Scholar 

  8. N. Bourbaki: General Topology, Part 2. Addison-Wesley Publishing Company, Reading, Massachusetts, 1966, pp. 363.

    Google Scholar 

  9. M. J. Chasco: Pontryagin duality for metrizable groups. Archiv der Math. 70 (1998), 22-28.

    Google Scholar 

  10. K. Ciesielski: Set Theory for the Working Mathematician. Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  11. W. W. Comfort and Dieter Remus: Abelian torsion groups with a pseudocompact group topology. Forum Math. 6 (1994), 323-337.

    Google Scholar 

  12. W. W. Comfort and Dieter Remus: Pseudocompact refinements of compact group topologies. Math. Z. 215 (1994), 337-346.

    Google Scholar 

  13. W. W. Comfort and K. A. Ross: Topologies induced by groups of characters. Fund. Math. 55 (1964), 283-291.

    Google Scholar 

  14. W. W. Comfort and V. Saks: Countably compact groups and finest totally bounded topologies. Pacific J. Math. 49 (1973), 33-44.

    Google Scholar 

  15. W. W. Comfort, F. Javier Trigos-Arrieta and and Ta-Sun Wu: The Bohr compactification, modulo a metrizable subgroup. Fund. Math. 143 (1993), 119-136; Correction: 152 (1997), 97-98.

    Google Scholar 

  16. W. W. Comfort and J. van Mill: Some topological groups with, and some without, proper dense subgroups. Topology Appl. 41 (1991), 3-15.

    Google Scholar 

  17. D. N. Dikranjan, I. R. Prodanov and L. N. Stoyanov: Topological Groups (Characters, Dualities and Minimal Group Topologies). Monographs and Textbooks in Pure and Applied Mathematics 130. Marcel Dekker, Inc., New York-Basel, 1990.

    Google Scholar 

  18. E. K. van Douwen: The maximal totally bounded group topology on G and the biggest minimal G-space for Abelian groups G. Topology Appl. 34 (1990), 69-91.

    Google Scholar 

  19. R. Engelking: General Topology. Heldermann Verlag, Berlin, 1989.

    Google Scholar 

  20. P. Flor: Zur Bohr-Konvergenz der Folgen. Math. Scand. 23 (1968), 169-170.

    Google Scholar 

  21. D. H. Fremlin: Consequences of Martin's Axiom. Cambridge Tracts in Mathematics, Vol. 84. Cambridge University Press, Cambridge, 1984.

    Google Scholar 

  22. L. Fuchs: Infinite Abelian Groups, Vol. I. Academic Press, New York-San Francisco-London, 1970.

    Google Scholar 

  23. J. Galindo and S. Hernández: On the completion of a MAP group. In: Papers on General Topology and Applications. Proc. Eleventh (August, 1995) summer topology conference at the University of Maine. Annals New York Acad. Sci. Vol. 806 (S. Andima, R. C. Flagg, G. Itzkowitz, Yung Kong, R. Kopperman, and P. Misra, eds.). New York, 1996, pp. 164-168.

  24. I. Glicksberg: Uniform boundedness for groups. Canad. J. Math. 14 (1962), 269-276.

    Google Scholar 

  25. A. Hajnal and I. Juhász: Remarks on the cardinality of compact spaces and their Lindelöf subspaces. Proc. Amer. Math. Soc. 59 (1976), 146-148.

    Google Scholar 

  26. E. Hewitt and K. A. Ross: Abstract Harmonic Analysis, Vol. I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 115. Springer Verlag, Berlin-Göttingen-Heidelberg, 1963.

    Google Scholar 

  27. E. Hewitt and K. A. Ross: Extensions of Haar measure and of harmonic analysis for locally compact Abelian groups. Math. Ann. 160 (1965), 171-194.

    Google Scholar 

  28. E. Hewitt and K. R. Stromberg: Real and Abstract Analysis. Graduate Texts in Mathematics Vol. 25. Springer-Verlag, New York, 1965.

    Google Scholar 

  29. H. Heyer: Dualität lokalkompakter Gruppen. Lecture Notes in Mathematics Vol. 150. Springer-Verlag, Berlin-Heidelberg-New York, 1970.

    Google Scholar 

  30. M. Higasikawa: Non-productive duality properties of topological groups. Topology Proc. 25 (2002), 207-216.

    Google Scholar 

  31. R. Hooper: A study of topological Abelian groups based on norm space theory. PhD. thesis. University of Maryland, College Park, 1967.

  32. M. Hruńák: Personal communication, November 20, 2000.

  33. T. Jech: Set Theory. Academic Press, Inc., San Diego, 1978.

    Google Scholar 

  34. S. Kaplan: Extensions of the Pontryagin duality I: infinite products. Duke Math. J. 15 (1948), 649-658.

    Google Scholar 

  35. S. Kaplan: Extensions of the Pontryagin duality II: direct and inverse sequences. Duke Math. J. 15 (1950), 419-435.

    Google Scholar 

  36. A. S. Kechris: Classical Descriptive Set Theory. Graduate Texts in Mathematics, Vol. 156. Springer-Verlag, New York, 1994.

    Google Scholar 

  37. Y. Kōmura: Some examples of linear topological spaces. Math. Ann. 153 (1964), 150-162.

    Google Scholar 

  38. K. Kunen: Set Theory, An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam-New York-Oxford, 1980.

    Google Scholar 

  39. H. Leptin: Abelsche Gruppen mit kompakten Charaktergruppen und Dualitätstheorie gewisser linear topologischer abelscher Gruppen. Abhandlungen Mathem. Seminar Univ. Hamburg 19 (1955), 244-263.

    Google Scholar 

  40. V. I. Malykhin and B. Šapirovski?: Martin's axiom and topological spaces. Doklady Akad. Nauk SSSR 213 (1973), 532-535. (In Russian.)

    Google Scholar 

  41. N. Noble: k-groups and duality. Trans. Amer. Math. Soc. 151 (1970), 551-561.

    Google Scholar 

  42. S. U. Raczkowski-Trigos: Totally bounded groups. PhD. thesis. Wesleyan University, Middletown, 1998.

    Google Scholar 

  43. M. Rajagopalan and H. Subrahmanian: Dense subgroups of locally compact groups. Colloq. Math. 35 (1976), 289-292.

    Google Scholar 

  44. G. A. Reid: On sequential convergence in groups. Math. Z. 102 (1967), 225-235.

    Google Scholar 

  45. D. Remus: Zur Struktur des Verbandes der Gruppentopologien. PhD. thesis. Universität Hannover, Hannover, 1983 (In English.); Summary: Resultate Math. 6 (1983), 151-152. 532.

    Google Scholar 

  46. D. Remus: The number of T 2-precompact group topologies on free groups. Proc. Amer. Math. Soc. 95 (1985), 315-319.

    Google Scholar 

  47. D. Remus and F. Javier Trigos-Arrieta: Abelian groups which satisfy Pontryagin duality need not respect compactness. Proc. Amer. Math. Soc. 117 (1993), 1195-1200.

    Google Scholar 

  48. D. Remus and F. Javier Trigos-Arrieta: Locally convex spaces as subgroups of products of locally compact Abelian groups. Math. Japon. 46 (1997), 217-222.

    Google Scholar 

  49. W. Roelcke and S. Dierolf: Uniform Structures on Topological Groups and Their Quotients. McGraw-Hill International Book Company, New York-Toronto, 1981.

    Google Scholar 

  50. H. H. Schaefer: Topological Vector Spaces. Graduate Texts in Mathematics, Vol. 3. Springer Verlag, New York-Berlin-Heidelberg-Tokyo, 1986, pp. 294.

    Google Scholar 

  51. S. J. Sidney: Weakly dense subgroups of Banach spaces. Indiana Univ. Math. J. 26 (1977), 981-986.

    Google Scholar 

  52. M. Freundlich Smith: The Pontrjagin duality theorem in linear spaces. Ann. Math. 56 (1952), 248-253.

    Google Scholar 

  53. E. Specker: Additive Gruppen von Folgen ganzer Zahlen. Portugal. Math. 9 (1950), 131-140.

    Google Scholar 

  54. S. M. Srivastava: A Course on Borel Sets. Graduate Texts in Mathematics, Vol. 180. Springer-Verlag, New York-Berlin-Heildelberg, 1998.

    Google Scholar 

  55. H. Steinhaus: Sur les distances des points des ensembles de mesure positive. Fund. Math. 1 (1920), 93-104 47.0179.02.

    Google Scholar 

  56. K. Stromberg: An elementary proof of Steinhaus' theorem. Proc. Amer. Math. Soc. 36 (1972), 308.

  57. S. Todorčević:. Personal Communication, August, 2001.

  58. F. J. Trigos-Arrieta: Pseudocompactness on groups. In: General Topology and Applications (S. J. Andima, R. Kopperman, P. R. Misra, J. Z. Reichman, and A. R. Todd, eds.). Marcel Dekker, Inc., New York-Basel-Hong Kong, 1991, pp. 369-378.

    Google Scholar 

  59. F. J. Trigos-Arrieta: Continuity, boundedness, connectedness and the Lindelöf property for topological groups. J. Pure and Applied Algebra 70 (1991), 199-210.

    Google Scholar 

  60. J. E. Vaughan: Small uncountable cardinals and topology. In: Open Problems in Topology, Chapter 11 (J. van Mill, G. M. Reed, eds.). Elsevier Science Publishers (B. V.), Amsterdam-New York-Oxford-Tokyo, 1990.

    Google Scholar 

  61. W. C. Waterhouse: Dual groups of vector spaces. Pacific J. Math. 26 (1968), 193-196.

    Google Scholar 

  62. A. Weil: Sur les Espaces à Structure Uniforme et sur la Topologie Générale. Publ. Math. Univ. Strasbourg, Vol. 551. Hermann & Cie, Paris.

  63. A. Weil: L'Integration dans les Groupes Topologiques et ses Applications. Actualités Scientifiques et Industrielle, Publ. Math. Inst. Strasbourg. Hermann, Paris, 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comfort, W.W., Raczkowski, S.U. & Trigos-Arrieta, F.J. The Dual Group of a Dense Subgroup. Czechoslovak Mathematical Journal 54, 509–533 (2004). https://doi.org/10.1023/B:CMAJ.0000042588.07352.99

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CMAJ.0000042588.07352.99

Navigation