Skip to main content
Log in

Complete Subobjects of Fuzzy Sets Over MV-Algebras

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

A subobjects structure of the category Ω-FSet of Ω-fuzzy sets over a complete MV-algebra \(\Omega = \left( {L,\Lambda , \vee , \otimes , \to } \right)\) is investigated, where an Ω-fuzzy set is a pair A = (A, δ) such that A is a set and δ: A × A → Ω is a special map. Special subobjects (called complete) of an Ω-fuzzy set A which can be identified with some characteristic morphisms A → Ω* = (L × L, μ) are then investigated. It is proved that some truth-valued morphisms \(_\Omega :\Omega ^ * \to \Omega ^ * , \cap _\Omega , \cup _\Omega :\Omega ^ * \times \Omega ^ * \to \Omega ^ * \) are characteristic morphisms of complete subobjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Eytan: Fuzzy sets: a topos-logical point of view. Fuzzy Sets and Systems 5 (1981), 47-67.

    Google Scholar 

  2. J. A. Goguen: L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174.

    Google Scholar 

  3. R. Goldblatt: TOPOI, The Categorical Analysis of Logic. North-Holland Publ. Co., Amsterdam-New York-Oxford, 1979.

    Google Scholar 

  4. D. Higgs: A Category Approach to Boolean-Valued Set Theory. Manuscript, University of Waterloo, 1973.

  5. U. Höhle: Presheaves over GL-monoids. In: Non-Classical Logic and Their Applications to Fuzzy Subsets. Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 127-157.

    Google Scholar 

  6. U. Höhle: M-Valued sets and sheaves over integral, commutative cl-monoids. Applications of Category Theory to Fuzzy Subsets. Kluwer Academic Publ., Dordrecht-Boston, 1992, pp. 34-72.

    Google Scholar 

  7. U. Höhle: Classification of subsheaves over GL-algebras. Proceedings of Logic Colloquium 98, Prague. Springer Verlag, 1999.

    Google Scholar 

  8. U. Höhle: Commutative, residuated l-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets. Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 53-106.

    Google Scholar 

  9. U. Höhle: Monoidal closed categories, weak topoi and generalized logics. Fuzzy Sets and Systems 42 (1991), 15-35.

    Google Scholar 

  10. P. T. Johnstone: Topos Theory. Academic Press, London-New York-San Francisco, 1977.

    Google Scholar 

  11. Toposes, Algebraic Geometry and Logic (F. W. Lawvere, ed.). Springer-Verlag, Berlin-Heidelberg-New York, 1971.

    Google Scholar 

  12. M. Makkai and E. G. Reyes: Firts Order Categorical Logic. Springer-Verlag, Berlin-NewYork-Heidelberg, 1977.

    Google Scholar 

  13. A.M. Pitts: Fuzzy sets do not form a topos. Fuzzy Sets and Systems 8 (1982), 101-104.

    Google Scholar 

  14. D. Ponasse: Categorical studies of fuzzy sets. Fuzzy Sets and Systems 28 (1988), 235-244.

    Google Scholar 

  15. A. Pultr: Fuzzy mappings and fuzzy sets. Comment. Mat. Univ. Carolin. 17 (1976).

  16. A. Pultr: Closed Categories of L-fuzzy Sets. Vortrage zur Automaten und Algorithmen-theorie, TU Dresden, 1976.

  17. L. N. Stout: A survey of fuzzy set and topos theory. Fuzzy Sets and Systems 42 (1991), 314.

    Google Scholar 

  18. O. Wyler: Fuzzy logic and categories of fuzzy sets. Non-Classical Logic and Their Applications to Fuzzy Subsets. Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 235-268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Močkoř, J. Complete Subobjects of Fuzzy Sets Over MV-Algebras. Czechoslovak Mathematical Journal 54, 379–392 (2004). https://doi.org/10.1023/B:CMAJ.0000042376.21044.1a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CMAJ.0000042376.21044.1a

Navigation