Skip to main content
Log in

Differences between scirrhous and non-scirrhous human gastric carcinomas from the aspect of proMMP-2 activation regulated by TIMP-3

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Gastric carcinomas can be classified into scirrhous carcinomas (SC), i.e. `linitis plastica' or Borrmann 4 gastric cancer, and non-scirrhous carcinomas (NSC). SC are characterized by diffuse invasive growth patterns with marked fibrosis, frequent peritoneal dissemination and lymph-node metastases and poor prognosis, while NSC show medullary growth patterns and common hematogenous metastases. To study the differences in local expression levels of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) between SC and NSC, we examined the expression of MMPs and TIMPs in human gastric carcinoma tissues by several methods including sandwich-enzyme immunoassay systems, gelatin zymography, reverse transcriptase-polymerase chain reaction (RT-PCR), real-time quantitative PCR, immunoblotting, immunohistochemistry and in situ zymography. Of the seven MMPs and two TIMPs tested, only proMMP-2 levels were remarkably higher in SC than in NSC (P<0.01), and proMMP-2 activation ratio was significantly lower in SC than in NSC (P<0.05). TIMP-3 mRNA levels were remarkably about 2-fold higher in SC than in NSC tissues (P<0.01). TIMP-3 production in SC was confirmed by immunoblotting and TIMP-3 was immunolocalized to stromal fibroblasts in SC. TIMP-3 mRNA levels inversely correlated with proMMP-2 activation ratios, although the expression levels of MT1-MMP and MT2-MMP were not different in SC and NSC. By in situ zymography, gelatinolytic activity appeared to be weaker in SC than in NSC. All these data suggest that proMMP-2 activation is down-regulated by TIMP-3 expressed in scirrhous gastric carcinomas. Our findings may explain the differences in clinical behaviors of SC and NSC.

Abbreviations: EIA – sandwich enzyme immunoassay; GAPDH – glyceraldehyde-3-phosphate dehydrogenase. MMP – matrix metalloproteinase; MT-MMP – membrane-type MMP; N – non-carcinoma; NSC – non-scirrhous carcinomas; RT-PCR – reverse transcriptase-polymerase chain reaction; SC – scirrhous carcinomas; SDS-PAGE – sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TIMP – tissue inhibitor of metalloproteinases

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauren P. The two histological main types of gastric carcinoma: Diffuse and so-called intestinal-type carcinoma. Acta Path Microbiol Scandinav 1965; 64: 31–49.

    CAS  Google Scholar 

  2. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma-2nd English edition. Gastric Cancer 1998; 1: 10–24.

    Article  PubMed  Google Scholar 

  3. Yokota T, Teshima S, Saito T et al. Borrmann's type IV gastric cancer: Clinicopathologic analysis. Can J Surg 1999; 42: 371–6.

    PubMed  CAS  Google Scholar 

  4. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 1991; 64: 327–36.

    Article  PubMed  CAS  Google Scholar 

  5. Stetler-Stevenson WG, _Aznavoorian S, _Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 1993; 9: 541–73.

    Article  PubMed  CAS  Google Scholar 

  6. Nomura H, Sato H, Seiki M et al. Expression of membrane-type matrix metalloproteinase in human gastric carcinomas. Cancer Res 1995; 55: 3263–6.

    PubMed  CAS  Google Scholar 

  7. Nomura H, Fujimoto N, Seiki M et al. Enhanced production of matrix metalloproteinases and activation of matrix metalloproteinase 2 (gelatinase A) in human gastric carcinomas. Int J Cancer 1996; 69: 9–16.

    Article  PubMed  CAS  Google Scholar 

  8. Yamashita K, Azumano I, Mai M et al. Expression and tissue localization of matrix metalloproteinase 7 (matrilysin) in human gastric carcinomas. Implications for vessel invasion and metastasis. Int J Cancer 1998; 79: 187–94.

    Article  PubMed  CAS  Google Scholar 

  9. Sier CF, Kubben FJ, Ganesh S et al. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma. Br J Cancer 1996; 74: 413–7.

    PubMed  CAS  Google Scholar 

  10. Mimori K, Mori M, Shiraishi T et al. Clinical significance of tissue inhibitor of metalloproteinase expression in gastric carcinoma. Br J Cancer 1997; 76: 531–6.

    PubMed  CAS  Google Scholar 

  11. Migita T, Sato E, Saito K et al. Differing expression of MMPs-1 and-9 and urokinase receptor between diffuse-and intestinal-type gastric carcinoma. Int J Cancer 1999; 84: 74–9.

    Article  PubMed  CAS  Google Scholar 

  12. Sato H, Takino T, Okada Y et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370: 61–5.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang J, Fujimoto N, Iwata K et al. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 1 (interstitial collagenase) using monoclonal antibodies. Clin Chim Acta 1993; 219: 1–14.

    Article  PubMed  CAS  Google Scholar 

  14. Fujimoto N, Mouri N, Iwata K et al. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 2 (72-kDa gelatinase/type IV collagenase) using monoclonal antibodies. Clin Chim Acta 1993; 221: 91–103.

    Article  PubMed  CAS  Google Scholar 

  15. Obata K, Iwata K, Okada Y et al. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 3 (stromelysin-1) using monoclonal antibodies. Clin Chim Acta 1992; 211: 59–72.

    Article  PubMed  CAS  Google Scholar 

  16. Ohuchi E, Azumano I, Yoshida S et al. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 7 (matrilysin) using monoclonal antibodies. Clin Chim Acta 1996; 244: 181–98.

    Article  PubMed  CAS  Google Scholar 

  17. Matsuki H, Fujimoto N, Iwata K et al. A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 8 (neutrophil collagenase) using monoclonal antibodies. Clin Chim Acta 1996; 244: 129–43.

    Article  PubMed  CAS  Google Scholar 

  18. Fujimoto N, Hosokawa N, Iwata K et al. A one-step sandwich enzyme immunoassay for inactive precursor and complexed forms of human matrix metalloproteinase 9 (92 kDa gelatinase/type IV collagenase, gelatinase B) using monoclonal antibodies. Clin Chim Acta 1994; 231: 79–88.

    Article  PubMed  CAS  Google Scholar 

  19. Tamei H, Azumano I, Iwata K et al. One-step sandwich immunoassays for human matrix metalloproteinase 13 (collagenase-3) using monoclonal antibodies. Correct Tissue Res 1998; 30: 15–22.

    CAS  Google Scholar 

  20. Kodama S, Iwata K, Iwata H et al. Rapid one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases. An application for rheumatoid arthritis serum and plasma. J Immunol Meth 1990; 127: 103–8.

    Article  CAS  Google Scholar 

  21. Fujimoto N, Zhang J, Iwata K et al. A one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases-2 using monoclonal antibodies. Clin Chim Acta 1993; 220: 31–45.

    Article  PubMed  CAS  Google Scholar 

  22. Nakamura H, Ueno H, Yamashita K et al. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human papillary thyroid carcinomas. Cancer Res 1999; 59: 467–73.

    PubMed  CAS  Google Scholar 

  23. Heid CA, Stevens J, Williams PM. Real time quantitative PCR. Genome Res 1996; 6: 986–94.

    PubMed  CAS  Google Scholar 

  24. Takizawa M, Ohuchi E, Yamanaka H et al. Production of tissue inhibitor of metalloproteinases 3 is selectively enhanced by calcium pentosan polysulfate in human rheumatoid synovial fibroblasts. Arthritis Rheum 2000; 43: 812–20.

    Article  PubMed  CAS  Google Scholar 

  25. Imai K, Yokohama Y, Nakanishi I et al. Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J Biol Chem 1995; 270: 6691–7.

    Article  PubMed  CAS  Google Scholar 

  26. Kolkenbrock H, Hecker-Kia A, Orgel D et al. Activation of progelatinase A and progelatinase A/TIMP-2 complex by membrane type 2-matrix metalloproteinase. Biol Chem 1997; 378: 71–6.

    PubMed  CAS  Google Scholar 

  27. Shimada T, Nakamura H, Ohuchi E et al.Characterization of a truncated recombinant form of human membrane type 3 matrix metalloproteinase. Eur J Biochem 1999; 262: 907–14.

    Article  PubMed  CAS  Google Scholar 

  28. Tokuraku M, Sato H, Murakami S et al. Activation of the precursor of gelatinase A/72 kDa type IV collagenase/MMP-2 in lung carcinomas correlates with the expression of membrane-type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int J Cancer 1995; 64: 355–9.

    PubMed  CAS  Google Scholar 

  29. Ueno H, Nakamura H, Inoue M et al. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 1997; 57: 2055–60.

    PubMed  CAS  Google Scholar 

  30. Shimada T, Nakamura H, Yamashita K et al. Enhanced production and activation of progelatinase A mediated by membrane-type 1 matrix metalloproteinase in human oral squamous cell carcinomas: Implications for lymph node metastasis. Clin Exp Metast 2000; 18: 179–288.

    Article  CAS  Google Scholar 

  31. Butler GS, Butler MJ, Atkinson SJ et al. The TIMP2 membrane type 1 metalloproteinase 'receptor' regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem 1998; 273: 871–80.

    Article  PubMed  CAS  Google Scholar 

  32. Kinoshita T, Sato H, Okada A et al. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads. J Biol Chem 1998; 273: 16098–103.

    Article  PubMed  CAS  Google Scholar 

  33. Butler GS, Will H, Atkinson SJ et al. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem 1997; 244: 653–7.

    Article  PubMed  CAS  Google Scholar 

  34. Bachman KE, Herman JG, Corn PG et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggest a suppressor role in kidney, brain, and other human cancers. Cancer Res 1999; 59: 798–802.

    PubMed  CAS  Google Scholar 

  35. Kang SH, Choi HH, Kim SG et al. Transcriptional inactivation of the tissue inhibitor of metalloproteinase-3 gene by dna hypermethylation of the 5'-CpG island in human gastric cancer cell lines. Int J Cancer 2000; 86: 632–5.

    Article  PubMed  CAS  Google Scholar 

  36. Anand-Apte B, Bao L, Smith R et al. A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem Cell Biol 1996; 74: 853–62.

    Article  PubMed  CAS  Google Scholar 

  37. Baker AH, George SJ, Zaltsman AB et al. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 1999; 79: 1347–55.

    Article  PubMed  CAS  Google Scholar 

  38. Fata JE, Leco KJ, Voura EB et al. Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest 2001; 108: 831–41.

    Article  PubMed  CAS  Google Scholar 

  39. Noda S, Soejima K, Inokuchi K. Clinicopathological analysis of the intestinal type and diffuse type of gastric carcinoma. Jpn J Surg 1980; 10: 277–83.

    Article  PubMed  CAS  Google Scholar 

  40. Sugano H, Nakamura K, Kato Y. Pathological studies of human gastric cancer. Acta Pathol Jpn 1982; 32 (Suppl 2): 329–47.

    PubMed  Google Scholar 

  41. Ohuchi E, Imai K, Fujii Y et al. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 1997; 272: 2446–51.

    Article  PubMed  CAS  Google Scholar 

  42. Ohta T, Terada T, Nagakawa T et al. Differential expression of pancreatic trypsinogen and cathepsin B in human scirrhous-type and intestinal-type gastric carcinomas. Oncol Rep 1994; 1: 203–208.

    Google Scholar 

  43. Ichikawa Y, Koshikawa N, Hasegawa S et al. Marked increase of trypsin(ogen) in serum of linitis plastica (gastric cancer, borrmann 4) patients. Clin Cancer Res 2000; 6: 1385–8.

    PubMed  CAS  Google Scholar 

  44. Nakada M, Nakamura H, Ikeda E et al. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol 1999; 154: 417–28.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, T., Nakamura, H., Otani, Y. et al. Differences between scirrhous and non-scirrhous human gastric carcinomas from the aspect of proMMP-2 activation regulated by TIMP-3. Clin Exp Metastasis 21, 223–233 (2004). https://doi.org/10.1023/B:CLIN.0000037704.72028.72

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIN.0000037704.72028.72

Navigation