Skip to main content
Log in

High-Frequency and Low-Frequency Variability in Stochastic Daily Weather Generator and Its Effect on Agricultural and Hydrologic Modelling

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The high-frequency and low-frequency variabilities, which are often misreproduced by the daily weather generators, have a significant effect on modelling weather-dependent processes. Three modifications are suggested to improve the reproduction of the both variabilities in a four-variate daily weather generator Met&Roll: (i) inclusion of the annual cycle of lag-0 and lag-1 correlations among solar radiation, maximum temperature and minimum temperature, (ii) use of the 3rd order Markov chain to model precipitation occurrence, (iii) applying the monthly generator (based on a first-order autoregressive model) to fit the low-frequency variability. The tests are made to examine the effects of the three new features on (i) a stochastic structure of the synthetic series, and on (ii) outputs from CERES-Wheat crop model (crop yields) and SAC-SMA rainfall-runoff model (monthly streamflow characteristics, distribution of 5-day streamflow) fed by the synthetic weather series. The results are compared with those obtained with the observed weather series.Results: (i) The inclusion of the annual cycle of the correlations has rather ambiguous effect on the temporal structure of the weather characteristics simulated by the generator and only insignificant effect on the output from either simulation model. (ii) Increased order of the Markov chain improves modelling of precipitation occurrence series (especially long dry spells), and correspondingly improves reliability of the output from either simulation model. (iii) Conditioning the daily generator on monthly generator has the most positive effect, especially on the output from the hydrological model: Variability of the monthly streamflow characteristics and the frequency of extreme streamflows are better simulated. (iv) Of the two simulation models, the improvements related to the three modifications are more pronounced in the hydrological simulations. This may be also due to the fact that the crop growth simulations were less affected by the imperfections of the unmodified version of Met&Roll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, V. A. and Hoogenboom, G.: 2000, 'The Impact of Climate Variability and Change on Crop Yield in Bulgaria', Agric. For. Meteorol. 104, 315–327.

    Google Scholar 

  • Bacsi, Z. and Hunkár, M.: 1994, 'Assessment of the Impacts of Climate Change on the Yields of Winter Wheat and Maize, Using Crop Models', Idöjárás 98, 119–134.

    Google Scholar 

  • Bárdossy, A. and Plate, E. J.: 1992, 'Space-Time Model for Daily Rainfall Using Atmospheric Circulation Patterns', Water Resour. Res. 28, 1247–1259.

    Google Scholar 

  • Bellone, E., Hughes, J. P., and Guttorp, P.: 2000, 'A HiddenMarkov Model for Downscaling Synoptic Atmospheric Patterns to Precipitation Amounts', Clim. Res. 15, 1–12.

    Google Scholar 

  • Bogardi, I., Matyasovszky, I., Bárdossy, A., and Duckstein, L.: 1993, 'Application of a Space-Time Stochastic Model for Daily Precipitation Using Atmospheric Circulation Patterns', J. Geophys. Res. D98, 16653–16667.

    Google Scholar 

  • Buchtele, J., Buchtelová, M., Fotová, M., and Dubrovský, M.: 1999, 'Runoff Changes in Czech River Basins-the Outputs of Rainfall-Runoff Simulations Using Different Climate Change Scenarios', J. Hydrol. Hydromech. 47, 180–194.

    Google Scholar 

  • Buchtele, J., Herrmann, A., Maraga, F., and Bajracharya, O. T.: 1998, 'Simulations of Effects of Land-Use Changes on Runoff and Evapotranspiration', in Hydrology, Water Resources and Ecohydrology in Headwaters, Procceedings of Conf. HeadWater '98, Merano, April 1998, IAHS Publ. No. 248, pp. 99–106.

  • Buchtele, J., Kesl, J., and Cissé, Y.: 1996, 'Evaluation of Dynamics of Groundwater Storages Using the Water Balance Simulation', J. Hydrol. Hydromech. 44, 376–395.

    Google Scholar 

  • Buishand, T. A. and Brandsma, T.: 2001, 'Multisite Simulation of Daily Precipitation and Temperature in the Rhine Basin by Nearest-Neighbor Resampling', Water Resour. Res. 37, 2761–2776.

    Google Scholar 

  • Burnash, J. C. R.: 1995, 'The NWS River Forecast System-Catchment Modelling', in Singh, V. P. (ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Colorado, pp. 311–366.

    Google Scholar 

  • Chin, E. H.: 1977, 'Modelling Daily Precipitation Occurrence Process with Markov Chain', Water Resour. Res. 13, 949–956.

    Google Scholar 

  • Chin, E. H. and Miller, J. F.: 1980, 'On the Conditional Distribution of Daily Precipitation Amounts', Mon. Wea. Rev. 108, 1462–1464.

    Google Scholar 

  • Chipanshi, A. C., Ripley, E. A., and Lawford, R. G.: 1997, 'Early Prediction of Spring Wheat Yields in Saskatchewan from Current and Historical Weather Data Using the CERES-Wheat Model', Agric. For. Meteorol. 84, 223–232.

    Google Scholar 

  • Cuculeanu, V., Marica, A., and Simota, C.: 1999, 'Climate Change Impact on Agricultural Crops and Adaptation Options in Romania', Clim. Res. 12, 153–160.

    Google Scholar 

  • Dubrovský, M.: 1996, 'Validation of the Stochastic Weather Generator Met&Roll', Meteorol. Zpr. 49, 129–138 (in Czech).

    Google Scholar 

  • Dubrovský, M.: 1997, 'Creating Daily Weather Series with Use of the Weather Generator', Environmetrics 8, 409–424.

    Google Scholar 

  • Dubrovský, M., Žalud, Z., and Št'astná, M.: 2000, 'Sensitivity of CERES-Maize Yields to Statistical Structure of Daily Weather Series', Clim. Change 46, 447–472.

    Google Scholar 

  • Gabriel, K. R. and Neumann, J.: 1962, 'A Markov Chain Model for Daily Rainfall Occurrence at Tel Aviv', Quart. J. Roy. Meteorol. Soc. 88, 90–95.

    Google Scholar 

  • Gates, P. and Tong, H.: 1976, 'On Markov Chain Modelling to Some Weather Data', J. Appl. Meteorol. 15, 1145–1151.

    Google Scholar 

  • Geng, S., Auburn, J. S., Brandsetter, E., and Li, B.: 1988, A Program to Simulate Meteorological Variables: Documentation for SIMMETEO, Agronomy Progress Report No. 204, Dept. of Agronomy and Range Sci., University of California, Davis, CA.

    Google Scholar 

  • Guenni, L.: 1994, 'Spatial Interpolation of the Parameters of Stochastic Weather Models', in Paoli, G. (ed.), Climate Change, Uncertainty and Decision Making, Institute for Risk Research, University of Waterloo, Ontario and IGBP-BAHC, Berlin, pp. 61–79.

    Google Scholar 

  • Gutry-Korycka, M., Werner, P., and Jakubiak, B.: 1994, 'Generation of Time Series of the Meteorological Values in Changing Climatic Conditions', Geographia Polonica 62, 23–45.

    Google Scholar 

  • Hansen, J. W. and Mavromatis, T.: 2001, 'Correcting Low-Frequency Variability Bias in Stochastic Weather Generators', Agric. For. Meteorol. 109, 297–310.

    Google Scholar 

  • Harrison, M. and Waylen, P.: 2000, 'A Note Concerning the Proper Choice for Markov Model Order for Daily Precipitation in the Humid Tropics: A Case Study in Costa Rica', Int. J. Clim. 20, 1861–1872.

    Google Scholar 

  • Hayhoe, H. N.: 2000, 'Improvements of Stochastic Weather Data Generators for Diverse Climates', Clim. Res. 14, 75–87.

    Google Scholar 

  • Huth, R.: 1997, 'Continental-Scale Circulation in the UKHI GCM', J. Climate 10, 1545–1561.

    Google Scholar 

  • Huth, R., Kyselý, J., and Dubrovský, M.: 2001, 'Time Structure of Observed, GCM-Simulated, Downscaled, and Stochastically Generated Daily Temperature Series', J. Climate 14, 4047–4061.

    Google Scholar 

  • Jamieson, P. D., Porter, J. R., Goudriaan, J., Ritchie, J. T., van Keulen, H., and Stol, W.: 1998, 'A Comparison of the Models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with Measurements from Wheat Grown under Drought', Field Crops Res. 55, 23–44.

    Google Scholar 

  • Johnson, G. L., Hanson, C. L., Hardegree, S. P., and Ballard, E. B.: 1996, 'Stochastic Weather Simulation: Overview and Analysis of Two Commonly Used Models', J. Appl. Meteorol. 35, 1878–1896.

    Google Scholar 

  • Jones, P. G. and Thornton, P. K.: 1997, 'Spatial and Temporal Variability of Rainfall Related to a Third-Order Markov Model', Agric. For. Meteorol. 86, 127–138.

    Google Scholar 

  • Kalvová, J. and Dubrovský, M.: 1995, 'Assessments of the Limits Between which Daily Average Values of Total Ozone Can Normally Vary', Meteorol. Zpr. 48, 9–17 (in Czech).

    Google Scholar 

  • Katz, R. W.: 1977, 'Precipitation as a Chain-Dependent Process', J. Appl. Meteorol. 16, 671–676.

    Google Scholar 

  • Katz, R. W.: 1996, 'Use of Conditional Stochastic Models to Generate Climate Change Scenarios', Clim. Change 32, 237–255.

    Google Scholar 

  • Katz, R.W. and Parlange, M. B.: 1993, 'Effects of an Index of Atmospheric Circulation on Stochastic Properties of Precipitation', Water Resour. Res. 29, 2335–2344.

    Google Scholar 

  • Katz, R. W. and Parlange, M. B.: 1996, 'Overdispersion Phenomenon in Stochastic Modeling of Daily Precipitation', in 13th Conf. on Prob. & Stat., San Francisco, American Meteorol. Soc., Boston, pp. 291–294.

    Google Scholar 

  • Kiely, G., Albertson, J. D., Parlange, M. B., and Katz, R. W.: 1998, 'Conditioning Stochastic Properties of Daily Precipitation on Indices of Atmospheric Circulation', Meteorol. Appl. 5, 75–87.

    Google Scholar 

  • Kyselý, J., Huth, R., and Dubrovský, M.: 2001, 'Simulation of Extreme Temperature Events Using General Circulation Models, Statistical Downscaling and Stochastic Generator', Meteorol. Zpr. 54, 73–82 (in Czech).

    Google Scholar 

  • Lana, X. and Burgueño, A.: 1998, 'Daily Dry-Wet Behaviour in Catalonia (NE Spain) from the Viewpoint of Markov Chains', Int. J. Clim. 18, 793–815.

    Google Scholar 

  • Landau, S., Mitchell, R. A. C., Barnett, V., Colls, J. J., Craigon, J., Moore, K. L., and Payned, R. W.: 1998, 'Testing Winter Wheat Simulation Models, Predictions Against Observed U.K. Grain Yields', Agric. For. Meteorol. 89, 85–100.

    Google Scholar 

  • Mavromatis, T. and Jones, P. D.: 1999, 'Evaluation of HadCM2 and Direct Use of Daily GCM Data in Impact Assessment Studies', Clim. Change 41, 583–614.

    Google Scholar 

  • Mavromatis, T. and Hansen, J. W.: 2001, 'Interannual Variability Characteristics and Simulated Crop Response of Four Stochastic Weather Generators', Agric. For. Meteorol. 109, 283–296.

    Google Scholar 

  • Mearns, L. O., Mavromatis, T., Tsvetsinskaya, E., Hays, C., and Easterling, W.: 1999, 'Comparative Responses of EPIC and CERES Crop Models to High and Low Spatial Resolution Climate Change Scenarios', J. Geophys. Res. D104, 6623–6646.

    Google Scholar 

  • Mearns, L. O., Rosenzweig, C., and Goldberg, R.: 1992, 'Effect of Changes in Interannual Climatic Variability on CERES-Wheat Yields: Sensitivity and 2× CO2 General Circulation Model Studies', Agric. For. Meteorol. 62, 159–189.

    Google Scholar 

  • Mearns, L. O., Rosenzweig, C., and Goldberg, R.: 1996, 'The Effect of Changes in Daily and Interannual Climatic Variability on CERES-Wheat: A Sensitivity Study', Clim. Change 32, 257–292.

    Google Scholar 

  • Mearns, L. O., Rosenzweig, C., and Goldberg, R.: 1997, 'Mean and Variance Change in Climate Scenarios: Methods, Agricultural Applications, and Measures of Uncertainty', Clim. Change 35, 367–396.

    Google Scholar 

  • Moon, S.-E., Ryoo, S.-B., and Kwon, J. G.: 1994, 'A Markov Chain Model for Daily Precipitation Occurrence in South Korea', Int. J. Clim. 14, 1009–1016. 178 MARTIN DUBROVSKÝ ET AL.

    Google Scholar 

  • Peiris, D. R. and McNicol, J. W.: 1996, 'Modelling Daily Weather with Multivariate Time Series', Agric. For. Meteorol. 79, 219–231.

    Google Scholar 

  • Porter, J. R.: 1993, 'AFRCWHEAT2: A Model of the Growth and Development of Wheat Incorporating Responses to Water and Nitrogen', Eur. J. Agron. 2, 69–82.

    Google Scholar 

  • Racsko, P., Szeidl, L., and Semenov, M.: 1991, 'A Serial Approach to Local Stochastic Weather Models', Ecol. Modelling 57, 27–41.

    Google Scholar 

  • Richardson, C. W.: 1981, 'Stochastic Simulation of Daily Precipitation, Temperature, and Solar Radiation', Water Resour. Res. 17, 182–190.

    Google Scholar 

  • Riha, S. J., Wilks, D. S., and Simoens, P.: 1996, 'Impact of Temperature and Precipitation Variability on Crop Model Predictions', Clim. Change 32, 293–311.

    Google Scholar 

  • Rožnovský, J. and Svoboda, J.: 1995, 'Agroclimatological Characterization of Zabcice Field', Folia Universitatis Agriculturae et Silviculturae, MZLU Brno, Czech Republic, 49 pp. (in Czech).

    Google Scholar 

  • Semenov, M. A. and Barrow, E. M.: 1997, 'Use of a Stochastic Weather Generator in the Development of Climate Change Scenarios', Clim. Change 35, 397–414.

    Google Scholar 

  • Semenov, M. A., Brooks, R. J., Barrow, E. M., and Richardson, C. W.: 1998, 'Comparison of the WGEN and LARS-WG Stochastic Weather Generators for Diverse Climates', Clim. Res. 10, 95–107.

    Google Scholar 

  • Semenov, M. A. and Porter, J. R.: 1995, 'Climatic Variability and the Modelling of Crop Yields', Agric. For. Meteorol. 73, 265–283.

    Google Scholar 

  • Solow, A. R., 1988: 'Detecting Changes through Time in the Variance of a Long-Term Hemispheric Temperature Record: an Application of Robust LocallyWeighted Regression', J. Climate 1, 290–296.

    Google Scholar 

  • Spirkl, W. and Ries, H.: 1986, 'Non-Stationary Markov Chains for Modelling Daily Radiation Data', Q. J. R. Meteorol. Soc. 112, 1219–1229.

    Google Scholar 

  • Št'astná, M., Trnka, M., K?en, J., Dubrovský, M., and Žalud, Z.: 2002, 'Evaluation of the CERES Models in Different Production Regions of the Czech Republic', Rostlinná Výroba 48, 125–132.

    Google Scholar 

  • Št'astná, M. and Žalud, Z.: 1999, 'Sensitivity Analysis of Soil Hydrologic Parameters for Two Crop Simulation Models', Soil and Tillage Res. 50, 305–318.

    Google Scholar 

  • Stehlík, J. and Bárdossy, A.: 2002, 'Multivariate Stochastic Downscaling Model for Generating Daily Precipitation Series Based on Atmospheric Circulation', J. Hydrol. 256, 120–141.

    Google Scholar 

  • Stern, R. D. and Coe, R.: 1984, 'A Model Fitting Analysis of Daily Rainfall Data', J. Roy. Statist. Soc. A147, 1–34.

    Google Scholar 

  • Todorovic, P. and Woolhiser, D. A.: 1975, 'A Stochastic Model of n-Day Precipitation', J. Appl. Meteorol. 14, 17–24.

    Google Scholar 

  • Tubiello, F. N., Donatelli, M., Rosenzweig, C., and Stockle, C. O.: 2000, 'Effects of Climate Change and Elevated CO2 on Cropping Systems: Model Predictions at Two Italian Locations', Eur. J. Agron. 13, 179–189.

    Google Scholar 

  • Tsuji, G. Y., Uehara, G., and Balas, S.: 1994, DSSAT v3., University of Hawaii, Honolulu, Hawaii.

    Google Scholar 

  • Wallis, T. W. R. and Griffiths J. F.: 1997, 'Simulated Meteorological Input for Agricultural Models', Agric. For. Meteorol. 88, 241–258.

    Google Scholar 

  • Wilby, R. L.: 1994, 'Stochastic Weather Type Simulation for Regional Climate Change Impact Assessment', Water Resour. Res. 30, 3395–3403.

    Google Scholar 

  • Wilks, D. S.: 1989, 'Conditioning Stochastic Daily Precipitation Models on Total Monthly Precipitation', Water Resour. Res. 25, 1429–1439.

    Google Scholar 

  • Wilks, D. S.: 1992, 'Adapting Stochastic Weather Generation Algorithms for Climate Change Studies', Clim. Change 22, 67–84.

    Google Scholar 

  • Wilks, D. S.: 1998, 'Multisite Generalization of a Daily Stochastic Precipitation Generation Model', J. Hydrol. 210, 178–191.

    Google Scholar 

  • Wilks, D. S.: 1999a, 'Interannual Variability and Extreme-Value Characteristics of Several Stochastic Daily Precipitation Models', Agric. For. Meteorol. 93, 153–169.

    Google Scholar 

  • Wilks, D. S.: 1999b, 'Simultaneous Stochastic Simulation of Daily Precipitation, Temperature and Solar Radiation at Multiple Sites in Complex Terrain', Agric. For. Meteorol. 96, 85–101.

    Google Scholar 

  • Wilson, L. L., Lettenmaier, D. P., and Skyllingstad, E.: 1992, 'A Hierarchical Stochastic Model of Large-Scale Atmospheric Circulation Patterns and Multiple Station Daily Precipitation', J. Geophys. Res. D97, 2791–2809.

    Google Scholar 

  • Wolf, J., Evans, L. G., Semenov, M. A., Eckersten, H., and Iglesias, A.: 1996, 'Comparison of Wheat Simulation Models under Climate Change. I. Model Calibration and Sensitivity Analyses', Clim. Res. 7, 253–270.

    Google Scholar 

  • Young, K. C.: 1994, 'A Multivariate Chain Model for Simulating Climatic Parameters from Daily Data', J. Appl. Meteorol. 33, 661–671.

    Google Scholar 

  • Žalud, Z. and Dubrovský, M.: 2002, 'Modelling Climate Change Impacts on Maize Growth and Development in the Czech Republic', Theor. Appl. Climatol. 72, 85–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubrovský, M., Buchtele, J. & Žalud, Z. High-Frequency and Low-Frequency Variability in Stochastic Daily Weather Generator and Its Effect on Agricultural and Hydrologic Modelling. Climatic Change 63, 145–179 (2004). https://doi.org/10.1023/B:CLIM.0000018504.99914.60

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIM.0000018504.99914.60

Keywords

Navigation