Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Future Changes in Biological Activity in the North Pacific Due to Anthropogenic Forcing of the Physical Environment

Abstract

Many studies have examined the physical changes expected in the environment as a result of anthropogenic forcing. These physical changes will have an effect on ecosystems as well. In this study, a nitrogen-phytoplankton-zooplankton (NPZ) model is used to examine the effects of changes in the physical environment on primary productivity in the North Pacific ocean. The physical variables considered are mixed layer temperature and depth, solar insolation, and large-scale upwelling. The changes in these fields by the 2090s are taken from a coupled ocean-atmosphere general circulation model forced by projected atmospheric CO2 and sulfates, then applied to the NPZ biological model. Theresult is a change in the seasonal cycle of phytoplankton and herbivore concentrations across the subpolar North Pacific, moving from a regime characterized by strong variability with low wintertime values and a spring bloom, to much more constant yearly values. A reduction of yearly-averaged primary productivity accompanies much of this shift to more constant year-round conditions. In other regions, productivity increases as warmer surface waters enable higher growth rates. Changes in mixed layer temperature and depth account for almost all the changes in productivity; model-predicted changes in surface insolation and large-scale upwelling have little impact.

This is a preview of subscription content, log in to check access.

References

  1. Barnett, T. P., Malone, R., Pennell, W., Stammer, D., Semtner, A., and Washington, W.: 2004, ‘The Effects of Climate Change on Water Resources in the West: Introduction and Overview’, Clim. Change 62, 1–11.

  2. Bopp, L., Monfray, P., Aumont, O., Dufrense, J.-L., Le Treut, H., Madec, G., Terray, L., and Orr, J. C.: 2001, ‘Potential Impact of Climate Change on Marine Export Production’, Global Biogeochem. Cycles 15, 81–99.

  3. Dai, A., Washington, W., Meehl, G., Bettge, T., and Strand, G.: 2004, ‘The ACPI Climate Change Simulations’, Clim. Change 62, 29–43.

  4. Denman, K., Hofmann, E., and Marchant, H.: 1996, ‘Marine Biotic Responses to Environmental Change and Feedbacks to Climate’, in Houghton, J. T., Filho, L. G. M., Callander, B. A., Harris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995, Cambridge University Press, New York, pp. 485–516.

  5. Dukowicz, J. K. and Smith, R. D.: 1994, ‘Implicit Free-Surface Method for the Bryan-Cox-Semtner Ocean Model’, J. Geophys. Res. 99, 7991–8014.

  6. Evans, G. T. and Parslow, J. S.: 1985, ‘A Model of Annual Plankton Cycles’, Biological Oceanography 3, 327–347.

  7. Frost, B.W.: 1991, ‘The Role of Grazing in Nutrient-Rich Areas of the Open Sea’, Limnol. Oceanogr. 36, 1616–1630.

  8. Gargett, A. E.: 1997, ‘Physics to Fish: Interactions between Physics and Biology on a Variety of Scales’, Oceanography 10, 128–131.

  9. Hunke, E. C. and Dukowicz, J. K.: 1997, ‘An Elastic-Viscous-Plastic Model for Sea Ice Dynamics’, J. Phys. Oceanog. 27, 1849–1867.

  10. IPCC: 2001, Climate Change 2001: Synthesis Report, Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 397 pp.

  11. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. J., and Rasch, P. J.: 1998, ‘The National Center for Atmospheric Research Community Climate Model: CCM3’, J. Climate 11, 1131–1149.

  12. Levitus, S.: 1994, World Ocean Atlas 1994, U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, 552 pp.

  13. Maier-Reimer, E., Mikolajewicz, U., and Winguth, A.: 1996, ‘Future Ocean Update of CO2: Interaction between Ocean Circulation and Biology’, Clim. Dyn. 12, 711–721.

  14. Martin, J. H., Gordon, R. M., and Fitzwater, S. E.: 1990, ‘Iron in Antarctic Waters’, Nature 345, 156–158.

  15. Mitchell, B. G., Brody, E. A., Holm-Hansen, O., McClain, C., and Bishop, J.: 1991, ‘Light Limitation of Phytoplankton Biomass and Macronutrient Utilization in the Southern Ocean’, Limnol. Oceanogr. 36, 1662–1677.

  16. Obata, A., Ishizaka, J., and Endoh, M.: 1996, ‘Global Verification of Critical Depth Theory for Phytoplankton Bloom with Climatological in situ Temperature and Satellite Ocean Color Data’, J. Geophys. Res. 101, 20657–20667.

  17. Polovina, J. J., Mitchum, G. T., and Evans, G. T.: 1995, ‘Decadal and Basin-Scale Variation in Mixed Layer Depth and the Impact on Biological Production in the Central and North Pacific, 1960-1988’, Deep-Sea Res. 42, 1701–1716.

  18. Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., and Manabe, S.: 1998, ‘Simulated Response of the Ocean Carbon Cycle to Anthropogenic Climate Warming’, Nature 393, 245–249.

  19. Sarmiento, J. L., Slater, R. D., Fasham, M. J., Ducklow, H. W., Toggweiler, J. R., and Evans, G. T.: 1993, ‘A Seasonal Three-Dimensional Ecosystem Model of Nitrogen Cycling in the North Atlantic Euphotic Zone’, Global Biogeochem. Cycles 7, 417–450.

  20. Sarmiento, J. L. and Toggweiler, J. R.: 1984, ‘A New Model for the Role of the Oceans in Determining Atmospheric pCO2’, Nature 308, 621–624.

  21. Shaffer, G.: 1993, ‘Effects of the Marine Biota on Global Carbon Cycling’, in Heimann, M. (ed.), The Global Carbon Cycle, Springer-Verlag, Berlin, pp. 431–455.

  22. Smith, R. D., Dukowicz, J. K., and Malone, R. C.: 1992, ‘Parallel Ocean General Circulation Modeling’, Physica D 60, 38–61.

  23. Sverdrup, H. U.: 1953, ‘On Conditions for the Vernal Blooming of Phytoplankton’, J. Cons. Int. Explor. Mer 18, 287–295.

  24. Taylor, A. H., Geider, R. J., and Gilbert, F. J. H.: 1997, ‘Seasonal and Latitudinal Dependencies of Phytoplankton Carbon-to-Chlorophyll a Ratios: Results of a Modelling Study’, Marine Ecology-Progress Series 152, 51–66.

  25. Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J., Bettge, T.W., Craig, A. P., Strand, W. G., Arblaster, J., Wayland, V. B., James, R., and Zhang, Y.: 2000, ‘Parallel Climate Model (PCM) Control and Transient Simulations’, Clim. Dyn. 16, 755–774.

  26. Zhang, J. and Hibler, W. D.: 1997, ‘On an Efficient Numerical Method for Modeling Sea Ice Dynamics’, J. Geophys. Res. 102, 8691–8702.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pierce, D.W. Future Changes in Biological Activity in the North Pacific Due to Anthropogenic Forcing of the Physical Environment. Climatic Change 62, 389–418 (2004). https://doi.org/10.1023/B:CLIM.0000013678.59224.98

Download citation

Keywords

  • Phytoplankton
  • Insolation
  • General Circulation Model
  • Physical Change
  • Spring Bloom