Climatic Change

, Volume 62, Issue 1–3, pp 45–74 | Cite as

Evaluation of Hydrologically Relevant PCM Climate Variables and Large-Scale Variability over the Continental U.S.

  • Chunmei Zhu
  • David W. Pierce
  • Tim P. Barnett
  • Andrew W. Wood
  • Dennis P. Lettenmaier
Article

Abstract

The ability of the Parallel Climate Model (PCM) to reproduce the mean and variability of hydrologically relevant climate variables was evaluated by comparing PCM historical climate runs with observations over temporal scales from sub-daily to annual. The domain was the continental U.S, and the model spatial resolution was T42 (about 2.8 degrees latitude by longitude). The climate variables evaluated include precipitation, surface air temperature, net surface solar radiation, soil moisture, and snow water equivalent. The results show that PCM has a winter dry bias in the Pacific Northwest and a summer wet bias in the central plains. The diurnal precipitation variation in summer is much stronger than observed, with an afternoon maximum in summer precipitation over much of the U.S. interior, in contrast with an observed nocturnal maximum in parts of the interior. PCM has a cold bias in annual mean temperature over most of the U.S., with deviations as large as −8 K. The PCM daily temperature range is lower than observed, especiallyin the central U.S. PCM generally overestimates the net solar radiation over most of the U.S, although the diurnal cycle is simulated well in spring, summer and winter. In autumn PCM has a pronounced noontime peak in solar radiation that differs by 5–10% from observations. PCM'ssimulated soil moisture is less variable than that of a sophisticated land-surface hydrology model, especially in the interior of the country. PCM simulates the wetter conditions over the southeastern U.S. and California during warm (El Niño) events, but shifts the drier conditions in the PacificNorthwest northward and underestimates their magnitude. The temperature response to the North Pacific Oscillation is generally captured by PCM, but the amplitude of this response is overestimated by a factor of about two.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, F. A., Lettenmaier, D. P., Wood, E. F., and Smith, J. A.: 1996, ‘Application of a Macroscale Hydrologic Model to Estimate the Water Balance of the Arkansas-Red River basin’, J. Geophys. Res. 101, 7449–7459.Google Scholar
  2. Barnett, T. P., Malone, R., Pennell, W., Stammer, D., Semtner, A., and Washington, W.: 2004, ‘The Effects of Climate Change on Water Resources in the West: Introduction and Overview’, Clim. Change 62, 1–11.Google Scholar
  3. Bonan, G. B.: 1996, The NCAR Land Surface Model (LSM version 1.0) Coupled to the NCAR Community Climate Model. NCAR saTech. Note NCAR/TN-429+STR, 171 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307]Google Scholar
  4. Bonan, G. B.: 1998, ‘The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model’, J. Climate 11, 1307–1326.Google Scholar
  5. Cane, M. A., Clement, A. C., Kaplan, A., Kushnir, Y., Pozdnyakov, D., Seager, R., Zebiak, S. E., and Murtugudde, R.: 1997, ‘Twentieth-Century Sea Surface Temperature Trends’, Science 275, 957–960.Google Scholar
  6. Cayan, D. R. and Webb, R. H.: 1992, ‘El Nino/Southern Oscillation and Streamflow in the Western United States. El Nino: Historical and Paleoclimatic Aspects of the Southern Oscillation’, in Diaz H. F. and Markgraf, V. (eds.), Cambridge University Press.Google Scholar
  7. Changnon, S. A.: 1999, ‘Impacts of 1997–98 El Nino-Generated Weather in the United States’, Bull. Amer. Meteorol. Soc. 80, 1819–1827.Google Scholar
  8. Christensen, N., Wood, A., Voisin, N., Lettenmaier, D., and Palmer, R.: 2004, ‘Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin’, Clim. Change 62, 337–363.Google Scholar
  9. Dai A., Giorgi F., and Trenberth, K. E.: 1999a, ‘Observed and Model-Simulated Diurnal Cycles of Precipitation over the Contiguous United States’, J. Geophys. Res. 104, 6377–6402.Google Scholar
  10. Dai, A., Trenberth K. E., and Karl, T. R.: 1999b, ‘Effects of Clouds, SoilMoisture, Precipitation, and Water Vapor on Diurnal Temperature Range’, J. Climate 12, 2451–2473.Google Scholar
  11. Dai, A., Washington, W., Meehl, G., Bettge, T., and Strand, W.: 2004, ‘The ACPI Climate Change Simulations’, Clim. Change 62, 29–43.Google Scholar
  12. Daly, C., Neilson, R. P., and Phillips, D. L.: 1994, ‘A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain, J. Appl. Meteorol. 33, 140–158.Google Scholar
  13. Da Silva, A. M., Young, C. C., and Levitus, S.: 1995, Atlas of Surface Marine Data 1994, Volume 1: Algorithms and Procedures. NOAA Atlas NESDIS 6, U.S. Dept. Commerce, 299 pp.Google Scholar
  14. Deser, C. and Blackmon, M. L.: 1995, ‘On the Relationship between Tropical and North Pacific Sea Surface Temperature Variations’, J. Climate 8, 1677–1680.Google Scholar
  15. Dukowicz, J. K. and Smith, R. D.: 1994, ‘Implicit Free-Surface Method for the Bryan-Cox-Semtner Ocean Model’, J. Geophys. Res. 99, 7991–8014.Google Scholar
  16. Gershunov, A. and Barnett, T. P.: 1998, ‘ENSO Influence on Intraseasonal Extreme Rainfall and Temperature Frequencies in the Contiguous United States: Observations and Model Results’, J. Climate 11, 1575–1586.Google Scholar
  17. Hunke, E. C. and Dukowicz, J. K.: 1997, ‘An Elastic-Viscous-Plastic Model for Sea Ice Dynamics’, J. Phys. Oceanog. 27, 1849–1867.Google Scholar
  18. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L., and Rasch, P. J.: 1998, ‘The National Center for Atmospheric Research Community Climate Model: CCM3’, J. Climate 11, 1131–1149.Google Scholar
  19. Kiehl J. T., Hack, J. J., and Hurrel, J. W.: 1998, ‘The Energy Budget of the NCAR Community Climate Model: CCM3’, J. Climate 11, 1151–1178.Google Scholar
  20. Kimball, J. S., Running, S. W., and Nemani, R.: 1997, ‘An Improved Method for Estimating Surface Humidity from Daily Minimum Temperature’, Agric. For. Meteor. 85, 87–98.Google Scholar
  21. Latif, M. and Barnett, T. P.: 1994, ‘Causes of Decadal Climate Variability over the North Pacific and North America’, Science 266, 634–637.Google Scholar
  22. Latif, M. and Barnett, T. P.: 1996, ‘Decadal Climate Variability over the North Pacific and North America: Dynamics and Predictability’, J. Climate 9, 2407–2423.Google Scholar
  23. Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: 1994, ‘One-Dimensional Statistical Dynamic Representation of Subgrid Spatial Variability of Precipitation in the Two-Layer Variable Infiltration Capacity Model’, J. Geophys. Res. 101, 21403–21422.Google Scholar
  24. Lin, X, Randall, D. A., and Fowler, L. D.: 2000, ‘Diurnal Variability of the Hydrologic Cycle and Radiative Fluxes: Comparisons between Observations and a GCM’, J. Climate 13, 4159–4179.Google Scholar
  25. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: 1997, ‘A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production’, Bull. Amer. Meteorol. Soc. 78, 1069–1079.Google Scholar
  26. Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: 2002, ‘A Long-Term Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous United States’, J. Climate, accepted for publication.Google Scholar
  27. Mechoso, C. R., Robertson, A. W., Barth, N., Davey, M. K., Delecluse, P., Gent, P. R., Ineson, S., Kirtman, B., and Latif, M., et al.: 1995, ‘The Seasonal Cycle over the Tropical Pacific in Coupled Ocean-Atmosphere General Circulation Models’, Mon. Wea. Rev. 123, 2825–2838.Google Scholar
  28. Nijssen, B., Lenttenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E.: 1997, ‘Streamflow Simulation for Continental-Scale River Basins’, Water Resour. Res. 33, 711–724.Google Scholar
  29. Nijssen, B., O’Donnel, G. M., Lenttenmaier, D. P., Lohmann, D., and Wood, E.: 2001, ‘Predicting the Discharge of Global Rivers’, J. Climate 14, 3307–3323.Google Scholar
  30. Pan Ming, Sheffield, J., Wood, E. F., and Mitchell K. E., et al.: 2002, ‘Snow Process Modeling in the North American Land Data Assimilation System (NLADS). Part II: Evaluation of Model Simulated Snow Water Equivalent’, JGR, in review.Google Scholar
  31. Payne, J., Wood, A., Hamlet, A., Palmer, R., and Lettenmaier, D.: 2004, ‘Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin’, Clim. Change 62, 233–256.Google Scholar
  32. Pierce, D. W.: 2001, ‘Distinguishing Coupled Ocean-Atmosphere Interactions from Background Noise in the North Pacific’, Prog. Oceanogr. 49, 331–352.Google Scholar
  33. Ropelewski, C. F. and Halpert, M. S.: 1986, ‘North American Precipitation and Temperature Patterns Associated with the El Nino/Southern Oscillation (ENSO)’, Mon. Wea. Rev. 114, 2352–2362.Google Scholar
  34. Schaake J., Duan, Q. Y., and Mitchell K., et al.: 2003, ‘Analysis of Water Storage in Land Data Assimilation System (LDAS) Land Surface Models (LSMs), JGR, submitted.Google Scholar
  35. Shepard D. S.: 1984, ‘Computer Mapping: The SYMAP Interpolation Algorithm, in Gaile G. L. and Willmott, C. J. (eds.), Spatial Statistics and Models, D. Reidel, Norwell, Mass, pp. 133–145.Google Scholar
  36. Smith, R. D., Dukowicz, J. K., and Malone, R. C.: 1992, ‘Parallel Ocean General Circulation Modeling’, Physica D 60, 38–61.Google Scholar
  37. Thornton, P. E. and Running, S. W.: 1999, ‘An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity, and Precipitation’, Agric. For. Meteorol. 93, 211–228.Google Scholar
  38. Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M., and Roeckner, E.: 1999, ‘Increased El Nino Frequency in a Climate Model Forced by Future Greenhouse Warming’, Nature 398, 694–697.Google Scholar
  39. Trenberth, K. E. and Shea, D. J.: 1987, ‘On the Evolution of the Southern Oscillation’, Mon. Wea. Rev. 115, 3078–3096.Google Scholar
  40. VanRheenen, N., Wood, A., Palmer, R., and Lettenmaier, D.: 2004, ‘Potential Implications of PCM Climate Change Scenarios for Sacramento-San Joaquin River Basin Hydrology and Water Resources’, Clim Change 62, 257–281.Google Scholar
  41. Wallace, J. M.: 1975, ‘Diurnal Variations in Precipitation and Thunderstorm Frequency over the Conterminous United States’, Mon. Wea. Rev. 103, 406–419.Google Scholar
  42. Washington, M., Weatherly, J., Meehl, G. A., Semtner, A. J., Bettge, T.W., Craig, A. P., Strand, W. G., Arblaster, J., Wayland, V. B., James, R., and Zhang, Y.: 2000, ‘Parallel Climate Model (PCM) Control and Transient Simulations’, Clim. Dyn. 16, 755–774.Google Scholar
  43. Zhang, G. J. and McFarlane, N. A.: 1995, ‘Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model’, Atmos-Ocean 33, 407–446.Google Scholar
  44. Zhang, J. and Hibler, W. D.: 1997, ‘On an Efficient Numerical Method for Modeling Sea Ice Dynamics’, J. Geophys. Res. 102, 8691–702.Google Scholar
  45. Zhang, M. H., Lin W. Y., and Kiehl, J. T.: 1998, ‘Bias of Atmospheric Shortwave Absorption in the NCAR CCM: Comparison with Monthly ERBE/GEBA Measurements’, J. Geophys. Res. 103, 8919–8925.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Chunmei Zhu
    • 1
  • David W. Pierce
    • 2
  • Tim P. Barnett
    • 2
  • Andrew W. Wood
    • 1
  • Dennis P. Lettenmaier
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleU.S.A
  2. 2.Climate Research Division, Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaU.S.A

Personalised recommendations