Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluation of Hydrologically Relevant PCM Climate Variables and Large-Scale Variability over the Continental U.S.


The ability of the Parallel Climate Model (PCM) to reproduce the mean and variability of hydrologically relevant climate variables was evaluated by comparing PCM historical climate runs with observations over temporal scales from sub-daily to annual. The domain was the continental U.S, and the model spatial resolution was T42 (about 2.8 degrees latitude by longitude). The climate variables evaluated include precipitation, surface air temperature, net surface solar radiation, soil moisture, and snow water equivalent. The results show that PCM has a winter dry bias in the Pacific Northwest and a summer wet bias in the central plains. The diurnal precipitation variation in summer is much stronger than observed, with an afternoon maximum in summer precipitation over much of the U.S. interior, in contrast with an observed nocturnal maximum in parts of the interior. PCM has a cold bias in annual mean temperature over most of the U.S., with deviations as large as −8 K. The PCM daily temperature range is lower than observed, especiallyin the central U.S. PCM generally overestimates the net solar radiation over most of the U.S, although the diurnal cycle is simulated well in spring, summer and winter. In autumn PCM has a pronounced noontime peak in solar radiation that differs by 5–10% from observations. PCM'ssimulated soil moisture is less variable than that of a sophisticated land-surface hydrology model, especially in the interior of the country. PCM simulates the wetter conditions over the southeastern U.S. and California during warm (El Niño) events, but shifts the drier conditions in the PacificNorthwest northward and underestimates their magnitude. The temperature response to the North Pacific Oscillation is generally captured by PCM, but the amplitude of this response is overestimated by a factor of about two.

This is a preview of subscription content, log in to check access.


  1. Abdulla, F. A., Lettenmaier, D. P., Wood, E. F., and Smith, J. A.: 1996, ‘Application of a Macroscale Hydrologic Model to Estimate the Water Balance of the Arkansas-Red River basin’, J. Geophys. Res. 101, 7449–7459.

  2. Barnett, T. P., Malone, R., Pennell, W., Stammer, D., Semtner, A., and Washington, W.: 2004, ‘The Effects of Climate Change on Water Resources in the West: Introduction and Overview’, Clim. Change 62, 1–11.

  3. Bonan, G. B.: 1996, The NCAR Land Surface Model (LSM version 1.0) Coupled to the NCAR Community Climate Model. NCAR saTech. Note NCAR/TN-429+STR, 171 pp. [Available from NCAR, P.O. Box 3000, Boulder, CO 80307]

  4. Bonan, G. B.: 1998, ‘The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model’, J. Climate 11, 1307–1326.

  5. Cane, M. A., Clement, A. C., Kaplan, A., Kushnir, Y., Pozdnyakov, D., Seager, R., Zebiak, S. E., and Murtugudde, R.: 1997, ‘Twentieth-Century Sea Surface Temperature Trends’, Science 275, 957–960.

  6. Cayan, D. R. and Webb, R. H.: 1992, ‘El Nino/Southern Oscillation and Streamflow in the Western United States. El Nino: Historical and Paleoclimatic Aspects of the Southern Oscillation’, in Diaz H. F. and Markgraf, V. (eds.), Cambridge University Press.

  7. Changnon, S. A.: 1999, ‘Impacts of 1997–98 El Nino-Generated Weather in the United States’, Bull. Amer. Meteorol. Soc. 80, 1819–1827.

  8. Christensen, N., Wood, A., Voisin, N., Lettenmaier, D., and Palmer, R.: 2004, ‘Effects of Climate Change on the Hydrology and Water Resources of the Colorado River Basin’, Clim. Change 62, 337–363.

  9. Dai A., Giorgi F., and Trenberth, K. E.: 1999a, ‘Observed and Model-Simulated Diurnal Cycles of Precipitation over the Contiguous United States’, J. Geophys. Res. 104, 6377–6402.

  10. Dai, A., Trenberth K. E., and Karl, T. R.: 1999b, ‘Effects of Clouds, SoilMoisture, Precipitation, and Water Vapor on Diurnal Temperature Range’, J. Climate 12, 2451–2473.

  11. Dai, A., Washington, W., Meehl, G., Bettge, T., and Strand, W.: 2004, ‘The ACPI Climate Change Simulations’, Clim. Change 62, 29–43.

  12. Daly, C., Neilson, R. P., and Phillips, D. L.: 1994, ‘A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain, J. Appl. Meteorol. 33, 140–158.

  13. Da Silva, A. M., Young, C. C., and Levitus, S.: 1995, Atlas of Surface Marine Data 1994, Volume 1: Algorithms and Procedures. NOAA Atlas NESDIS 6, U.S. Dept. Commerce, 299 pp.

  14. Deser, C. and Blackmon, M. L.: 1995, ‘On the Relationship between Tropical and North Pacific Sea Surface Temperature Variations’, J. Climate 8, 1677–1680.

  15. Dukowicz, J. K. and Smith, R. D.: 1994, ‘Implicit Free-Surface Method for the Bryan-Cox-Semtner Ocean Model’, J. Geophys. Res. 99, 7991–8014.

  16. Gershunov, A. and Barnett, T. P.: 1998, ‘ENSO Influence on Intraseasonal Extreme Rainfall and Temperature Frequencies in the Contiguous United States: Observations and Model Results’, J. Climate 11, 1575–1586.

  17. Hunke, E. C. and Dukowicz, J. K.: 1997, ‘An Elastic-Viscous-Plastic Model for Sea Ice Dynamics’, J. Phys. Oceanog. 27, 1849–1867.

  18. Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L., and Rasch, P. J.: 1998, ‘The National Center for Atmospheric Research Community Climate Model: CCM3’, J. Climate 11, 1131–1149.

  19. Kiehl J. T., Hack, J. J., and Hurrel, J. W.: 1998, ‘The Energy Budget of the NCAR Community Climate Model: CCM3’, J. Climate 11, 1151–1178.

  20. Kimball, J. S., Running, S. W., and Nemani, R.: 1997, ‘An Improved Method for Estimating Surface Humidity from Daily Minimum Temperature’, Agric. For. Meteor. 85, 87–98.

  21. Latif, M. and Barnett, T. P.: 1994, ‘Causes of Decadal Climate Variability over the North Pacific and North America’, Science 266, 634–637.

  22. Latif, M. and Barnett, T. P.: 1996, ‘Decadal Climate Variability over the North Pacific and North America: Dynamics and Predictability’, J. Climate 9, 2407–2423.

  23. Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: 1994, ‘One-Dimensional Statistical Dynamic Representation of Subgrid Spatial Variability of Precipitation in the Two-Layer Variable Infiltration Capacity Model’, J. Geophys. Res. 101, 21403–21422.

  24. Lin, X, Randall, D. A., and Fowler, L. D.: 2000, ‘Diurnal Variability of the Hydrologic Cycle and Radiative Fluxes: Comparisons between Observations and a GCM’, J. Climate 13, 4159–4179.

  25. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: 1997, ‘A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production’, Bull. Amer. Meteorol. Soc. 78, 1069–1079.

  26. Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P., and Nijssen, B.: 2002, ‘A Long-Term Hydrologically-Based Data Set of Land Surface Fluxes and States for the Conterminous United States’, J. Climate, accepted for publication.

  27. Mechoso, C. R., Robertson, A. W., Barth, N., Davey, M. K., Delecluse, P., Gent, P. R., Ineson, S., Kirtman, B., and Latif, M., et al.: 1995, ‘The Seasonal Cycle over the Tropical Pacific in Coupled Ocean-Atmosphere General Circulation Models’, Mon. Wea. Rev. 123, 2825–2838.

  28. Nijssen, B., Lenttenmaier, D. P., Liang, X., Wetzel, S. W., and Wood, E.: 1997, ‘Streamflow Simulation for Continental-Scale River Basins’, Water Resour. Res. 33, 711–724.

  29. Nijssen, B., O’Donnel, G. M., Lenttenmaier, D. P., Lohmann, D., and Wood, E.: 2001, ‘Predicting the Discharge of Global Rivers’, J. Climate 14, 3307–3323.

  30. Pan Ming, Sheffield, J., Wood, E. F., and Mitchell K. E., et al.: 2002, ‘Snow Process Modeling in the North American Land Data Assimilation System (NLADS). Part II: Evaluation of Model Simulated Snow Water Equivalent’, JGR, in review.

  31. Payne, J., Wood, A., Hamlet, A., Palmer, R., and Lettenmaier, D.: 2004, ‘Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin’, Clim. Change 62, 233–256.

  32. Pierce, D. W.: 2001, ‘Distinguishing Coupled Ocean-Atmosphere Interactions from Background Noise in the North Pacific’, Prog. Oceanogr. 49, 331–352.

  33. Ropelewski, C. F. and Halpert, M. S.: 1986, ‘North American Precipitation and Temperature Patterns Associated with the El Nino/Southern Oscillation (ENSO)’, Mon. Wea. Rev. 114, 2352–2362.

  34. Schaake J., Duan, Q. Y., and Mitchell K., et al.: 2003, ‘Analysis of Water Storage in Land Data Assimilation System (LDAS) Land Surface Models (LSMs), JGR, submitted.

  35. Shepard D. S.: 1984, ‘Computer Mapping: The SYMAP Interpolation Algorithm, in Gaile G. L. and Willmott, C. J. (eds.), Spatial Statistics and Models, D. Reidel, Norwell, Mass, pp. 133–145.

  36. Smith, R. D., Dukowicz, J. K., and Malone, R. C.: 1992, ‘Parallel Ocean General Circulation Modeling’, Physica D 60, 38–61.

  37. Thornton, P. E. and Running, S. W.: 1999, ‘An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity, and Precipitation’, Agric. For. Meteorol. 93, 211–228.

  38. Timmermann, A., Oberhuber, J., Bacher, A., Esch, M., Latif, M., and Roeckner, E.: 1999, ‘Increased El Nino Frequency in a Climate Model Forced by Future Greenhouse Warming’, Nature 398, 694–697.

  39. Trenberth, K. E. and Shea, D. J.: 1987, ‘On the Evolution of the Southern Oscillation’, Mon. Wea. Rev. 115, 3078–3096.

  40. VanRheenen, N., Wood, A., Palmer, R., and Lettenmaier, D.: 2004, ‘Potential Implications of PCM Climate Change Scenarios for Sacramento-San Joaquin River Basin Hydrology and Water Resources’, Clim Change 62, 257–281.

  41. Wallace, J. M.: 1975, ‘Diurnal Variations in Precipitation and Thunderstorm Frequency over the Conterminous United States’, Mon. Wea. Rev. 103, 406–419.

  42. Washington, M., Weatherly, J., Meehl, G. A., Semtner, A. J., Bettge, T.W., Craig, A. P., Strand, W. G., Arblaster, J., Wayland, V. B., James, R., and Zhang, Y.: 2000, ‘Parallel Climate Model (PCM) Control and Transient Simulations’, Clim. Dyn. 16, 755–774.

  43. Zhang, G. J. and McFarlane, N. A.: 1995, ‘Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model’, Atmos-Ocean 33, 407–446.

  44. Zhang, J. and Hibler, W. D.: 1997, ‘On an Efficient Numerical Method for Modeling Sea Ice Dynamics’, J. Geophys. Res. 102, 8691–702.

  45. Zhang, M. H., Lin W. Y., and Kiehl, J. T.: 1998, ‘Bias of Atmospheric Shortwave Absorption in the NCAR CCM: Comparison with Monthly ERBE/GEBA Measurements’, J. Geophys. Res. 103, 8919–8925.

Download references

Author information

Correspondence to Dennis P. Lettenmaier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, C., Pierce, D.W., Barnett, T.P. et al. Evaluation of Hydrologically Relevant PCM Climate Variables and Large-Scale Variability over the Continental U.S.. Climatic Change 62, 45–74 (2004). https://doi.org/10.1023/B:CLIM.0000013677.37040.28

Download citation


  • Snow Water Equivalent
  • Cold Bias
  • North Pacific Oscillation
  • Surface Solar Radiation
  • Daily Temperature Range