Skip to main content
Log in

The WKB method for the Dirac equation with the vector and scalar potentials

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The WKB approximation is developed for the Dirac equation with the spherically symmetrical vector and scalar potentials. The relativistic wavefunctions are constructed, new quantization rule containing the spin-orbital interaction is obtained. For spherically symmetrical model of the Stark effect the quasi-classical spectrum of relativistic hydrogen-like atom is calculated. Application of the WKB method to the mass spectrum of the hydrogen-like quark systems was done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau and E.M. Lifshitz:Course of Theoretical Physics, Vol. 3,Quantum mechanics. Non-relativistic theory. Pergamon Press, London-Paris, 1958.

    Google Scholar 

  2. A.B. Migdal:Qualitative methods in quantum theory. Nauka, Moscow, 1975 (in Russian).

    Google Scholar 

  3. J. Heading:An introduction to phase-integral methods. Methuen, London, 1962.

    MATH  Google Scholar 

  4. N. Fröman and O. Fröman:JWKB Approximation. North-Holland Publishing Comp., Amsterdam, 1965.

    MATH  Google Scholar 

  5. Y. Yamabe, A. Tachibana, and H.J. Silverstone: Phys. Rev. A16 (1977) 877.

    Article  ADS  Google Scholar 

  6. V.D. Mur and V.S. Popov: Zh. Eksp. Teor. Fiz.104 (1993) 2293.

    Google Scholar 

  7. I.V. Komarov, L.I. Ponomaryov, and S.Yu. Slavyanov:Spheroidal and Coulomb Spheroidal Functions. Nauka, Moscow, 1976 (in Russian).

    Google Scholar 

  8. B.M. Karnakov and V.P. Krainov:Quasiclassical approximation in quantum mechanics. MEPI Publishing, Moscow, 1992 (in Russian).

    Google Scholar 

  9. W. Pauli: Helv. Phys. Acta5 (1932) 179.

    MATH  Google Scholar 

  10. S.I. Rubinov and J.B. Keller: Phys. Rev.131 (1963) 2789.

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Stachel and J. Plebansky: J. Math. Phys.18 (1977) 2368.

    Article  ADS  Google Scholar 

  12. V.S. Popov: Pis. Zh. Eksp. Teor. Fiz.11 (1970) 254.

    Google Scholar 

  13. V.P. Krainov: Pis. Zh. Eksp. Teor. Fiz.13 (1971) 359.

    Google Scholar 

  14. M.S. Marinov and V.S. Popov: Zh. Eksp. Teor. Fiz.67 (1974) 1250.

    Google Scholar 

  15. J.B. Zel’dovich and V.S. Popov: Usp. Fiz. Nauk105 (1971) 403.

    Google Scholar 

  16. S. Mukherjee and S.S. Chandel: J. Phys. A11 (1978) 1257.

    Article  ADS  Google Scholar 

  17. V.D. Mur and V.S. Popov: Yad. Fiz.28 (1978) 837.

    MathSciNet  Google Scholar 

  18. V.D. Mur, V.S. Popov, Yu.A. Simonov, and V.P. Yurov: Zh. Eksp. Teor. Fiz.105 (1994) 3.

    Google Scholar 

  19. I.V. Dobrovolska and R.S. Tutik: Phys. Lett. A260 (1999) 10.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. I.I. Haysak, V.I. Lengyel, and A.O. Shpenik: J. Phys. Stud.1 (1996) 42.

    MATH  Google Scholar 

  21. U. Muller-Nehler and G. Soff: Phys. Rep.246 (1994) 101.

    Article  ADS  Google Scholar 

  22. A.B. Migdal:Fermions and bosons in strong fields. Nauka, Moscow, 1978 (in Russian).

    Google Scholar 

  23. A.A. Grib, S.G. Mamaev, and V.M. Mostapenko:Vacuum quantum effects in strong fields. Energoizdat, Moscow, 1988 (in Russian).

    Google Scholar 

  24. W. Greiner, B. Muller, and J. Rafelski:Quantum Electrodynamics of Strong Fields. Springer, Berlin, 1985.

    Google Scholar 

  25. Wen-Chao Qiang: Chinese Physics11 (2002) 757.

    Article  ADS  Google Scholar 

  26. P.F. Byrd and M.D. Friedman:Handbook of elliptic integrals for engineers and scientists (2nd edn). Springer, Berlin, 1971.

    MATH  Google Scholar 

  27. Yu.A. Simonov: Yad. Fiz.60 (1997) 2252.

    MathSciNet  Google Scholar 

  28. V.S. Popov, B.M. Karnakov, and V.D. Mur: Zh. Eksp. Teor. Fiz.113 (1998) 1579.

    Google Scholar 

  29. V.S. Popov and A.V. Sergeev: Zh. Eksp. Teor. Fiz.113 (1998) 2047.

    Google Scholar 

  30. R.Ya. Damburg and V.V. Kolosov:The theoretical investigation of behaviour of hydrogenous Ridberg atoms in electric fields. Salaspils, Riga, 1980 (in Russian).

    Google Scholar 

  31. J. Schwinger: Phys. Rev.82 (1951) 664.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. C. Quiq and J. Rosner: Phys. Rep.56 (1979) 167.

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Lucha, F. Schoeberl, and D. Gromes: Phys. Rep.200 (1991) 129.

    Article  ADS  Google Scholar 

  34. S. Mukherejee, R. Nag, S. Sanyal, T. Mori, J. Morishita, and M. Tsuge: Phys. Rep.231 (1993) 201.

    Article  ADS  Google Scholar 

  35. S. Deoghuria and S. Chakrabarty: J. Phys. G: Nucl. Part. Phys.16 (1990) 1825.

    Article  ADS  Google Scholar 

  36. V.I. Lengyel, V.V. Rubish, and A.O. Shpenik: Ukr. Phys. J.47 (2002) 508.

    Google Scholar 

  37. V.I. Lengyel, V.V. Rubish, S. Chalupka, and M. Salak: Cond. Matt. Phys.1 (1998) 575.

    Google Scholar 

  38. M. Seetharaman, S. Raghavan, and S. Vasan: J. Phys. A16 (1983) 455.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubish, V.V., Lazur, V.Y., Reity, O.K. et al. The WKB method for the Dirac equation with the vector and scalar potentials. Czech J Phys 54, 897–919 (2004). https://doi.org/10.1023/B:CJOP.0000042643.47049.98

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CJOP.0000042643.47049.98

PACS

Key words

Navigation