Skip to main content
Log in

Potential formation in a bounded two-electron temperature plasma system with floating collector that emits electrons

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

Formation of the plasma potential in a plasma that contains energetic electrons and is bounded by a floating collector that emits electrons is studied theoretically. The problem is treated by a static. kinetic plasma-sheath model of Schwager and Birdsall [Phys. Fluids B2 (1990) 1057], which we have extended in order to include additional energetic electron population. The distribution of these electrons is assumed to be a high-temperature Maxwellian. They are called hot electrons. In the paper we study effects of the density and temperature of the hot electrons on the formation of the plasma potential. The model shows that for certain densities and temperatures of the hot electron population plasmas with two different plasma potentials can coexist in the system. These two plasmas are separated spatially by a double layer. For the case when there is no emission of electrons from the collector, results of the model are compared with computer simulation and very good agreement between the model and the simulation is found. The simulation also confirms existence of two plasmas with two different potentials separated by a double layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Schott: Phys. Fluids30 (1987) 1795.

    Article  ADS  Google Scholar 

  2. S.G. Ingram and N.StJ. Braithwaite: J. Phys. D: Appl. Phys.23 (1990) 1648.

    Article  ADS  Google Scholar 

  3. J.W. Bradley and H. Amemiya: J. Phys. Soc. Jpn.63 (1994) 3295.

    Article  ADS  Google Scholar 

  4. J.W. Bradley and H. Amemiya: Jpn. J. Appl. Phys.33 (1994) 3578.

    Article  ADS  Google Scholar 

  5. N. Jelić, M. Čerček, M. Stanojević, and T. Gyergyek: J. Phys. D: Appl. Phys.27 (1994) 2487.

    Article  ADS  Google Scholar 

  6. J.W. Bradley: J. Phys. D: Appl. Phys.29 (1996) 706.

    Article  ADS  Google Scholar 

  7. R. Miyano, S. Izumi, R. Kitada, M. Fujii, S. Ikezawa, and A. Ito: Plasma Sources Sci. Technol.6 (1997) 551.

    Article  ADS  Google Scholar 

  8. F.A. Haas and N.StJ. Braithwaite: J. Phys. D: Appl. Phys.33 (2000) 72.

    Article  ADS  Google Scholar 

  9. J.W. Bradley: J. Phys. D: Appl. Phys.34 (2001) 3241.

    Article  ADS  Google Scholar 

  10. S. Takamura: Phys. Lett. A133 (1988) 312.

    Article  ADS  Google Scholar 

  11. L.A. Schwager and C.K. Birdsall: Phys. Fluids B2 (1990) 1057.

    Article  ADS  Google Scholar 

  12. P.M. Meijer and W.J. Goedheer: Phys. Fluids B3 (1991) 1804.

    Article  ADS  Google Scholar 

  13. R.W. Boswel, A.J. Lichtenberg, and D. Vender: IEEE Trans. Plasma Sci.20 (1992) 62.

    Article  ADS  Google Scholar 

  14. K. Sato and F. Miyawaki: Phys. Fluids B4 (1992) 1247.

    Article  ADS  Google Scholar 

  15. S.B. Song, C.S. Chang, and D. Choi: Phys. Rev. E55 (1997) 1213.

    Article  ADS  Google Scholar 

  16. M. Čerček, T. Gyergyek, and M. Stanojević: Contrib. Plasma Phys.39 (1999) 541.

    Article  Google Scholar 

  17. E.R. Harrison and W.B. Thomson: Proc. Phys. Soc. London74 (1959) 145.

    Article  Google Scholar 

  18. G. Hairapetian and R.L. Stenzel: Phys. Fluids B3 (1991) 899.

    Article  ADS  Google Scholar 

  19. G.D. Hobbs and J.A. Wesson: Plasma Physics9 (1967) 85.

    Article  ADS  Google Scholar 

  20. N. Anderson: Int. J. Electronics32 (1972) 425.

    Article  Google Scholar 

  21. L.S. Hall and I. Bernstein: Lawrence Livermore National Laboratory Report No. UCID-17273, Livermore, California, 1976.

    Google Scholar 

  22. V.L. Sizonenko: Sov. Phys. Tech. Phys.26 (1981) 1345; (russian original: Zh. Tekh. Fiz.51 (1981) 2283).

    Google Scholar 

  23. R.N. Franklin and W.E. Han: Plasma Phys. Contr. Fusion30 (1988) 771.

    Article  ADS  Google Scholar 

  24. E. Hantzsche: Contrib. Plasma Phys.38 (1998) 467.

    Article  Google Scholar 

  25. L.A. Schwager: Phys. Fluids B5 (1993) 631.

    Article  ADS  Google Scholar 

  26. T. Gyergyek and M. Čerček: Czech. J. Phys.52 Suppl. D (2002) D528.

  27. L. Jolivet and J.-F. Roussel: IEEE Trans. Plasma Sci.30 (2002) 318.

    Article  Google Scholar 

  28. M.Y. Ye, T. Shimada, T. Kuwabara, N. Ohno, and S. Takamura: inContributed Papers of the 1998 ICPP and 25th EPS Conf. on Contr. Fusion and Plasma Physics, Prague, 29 June –3 July 1998, (Ed. P. Pavlo), ECA, 1998, Vol. 22C, p. 23.

    Google Scholar 

  29. M.Y. Ye and S. Takamura: Phys. Plasmas7 (2000) 3457.

    Article  ADS  Google Scholar 

  30. R. Schrittwieser, J. Adamek, P. Balan, M. Hron, C. Ionita, K. Jakubka, L. Kryška, E. Martines, J. Stöckel, M. Tichy, and G. Van Oost: Plasma Phys. Contr. Fusion44 (2002) 567.

    Article  ADS  Google Scholar 

  31. D. Tskhakaya and S. Kuhn: Contrib. Plasma Phys.40 (2000) 484.

    Article  Google Scholar 

  32. D. Tskhakaya, S. Kuhn, V. Petržilka, and R. Khanal: Phys. Plasmas9 (2002) 2486.

    Article  ADS  Google Scholar 

  33. J.P. Verboncoeur, M.V. Alves, V. Vahedi, and C.K. Birdsall: J. Comput. Phys.104 (1993) 321.

    Article  MATH  ADS  Google Scholar 

  34. Yu.P. Raizer:Gas Discharge Physics, Corrected 2nd printing, Springer, Berlin, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyergyek, T., Čerček, M. Potential formation in a bounded two-electron temperature plasma system with floating collector that emits electrons. Czech J Phys 54, 431–460 (2004). https://doi.org/10.1023/B:CJOP.0000020583.09944.2f

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CJOP.0000020583.09944.2f

PACS

Key words

Navigation