Czechoslovak Journal of Physics

, Volume 54, Issue 3, pp 349–355 | Cite as

Description of quasi-plane nonlinear standing waves in cylindrical resonators

  • M. Bednařík
  • P. Koníček


Many works have been dedicated to the problems of description of the nonlinear standing waves in the resonators of the circular cross-section. These works are restricted only to strictly plane waves. This paper connects to these works and extends them in the sense that it deals with quasi-plane nonlinear standing waves in the resonators of constant circular cross-section. Under certain suppositions it is possible to simplify the original Kuznetsov’s model equation and get the new much simpler model equation. This equation enables us to study the diffraction and lateral dispersion effects caused by the non-constant distributions of acoustic velocity on the exciting piston.


43.20.Ks 43.25.Jh 

Key words

nonlinear standing waves diffraction Kuznetsov’s model equation nonlinear resonator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.W. Swift: J. Acoust. Soc. Am.84 (1988) 1145.CrossRefADSGoogle Scholar
  2. [2]
    G.W. Swift: J. Acoust. Soc. Am.92 (1992) 1551.CrossRefADSGoogle Scholar
  3. [3]
    Yu.A. Illinski, B. Lipkens, T.S. Lucas, T.W. Van Doren, and E. Zabolotskaya: J. Acoust. Soc. Am.104 (1998) 2664.CrossRefADSGoogle Scholar
  4. [4]
    M.F. Hamilton, Y.A. Ilinskii, and E.A. Zabolotskaya: J. Acoust. Soc. Am.110 (2001) 109.CrossRefADSGoogle Scholar
  5. [5]
    Y.D. Chun and Y.H. Kim: J. Acoust. Soc. Am.108 (2000) 2765.CrossRefADSGoogle Scholar
  6. [6]
    V.G. Andreev, V.E. Gusev, A.A. Karabutov, O.V. Rudenko, and O.A. Sapozhnikov: Sov. Phys. Acoust.31 (1985) 162.Google Scholar
  7. [7]
    V.E. Gusev, H. Bailliet, P. Lotton, S. Job, and M. Bruneau: J. Acoust. Soc. Am.103 (1998) 3717.CrossRefADSGoogle Scholar
  8. [8]
    N. Sugimoto, M. Masuda, T.H. Doi, and T. Doi: J. Acoust. Soc. Am.110 (2001) 2263.CrossRefADSGoogle Scholar
  9. [9]
    V. Kaner, O.V. Rudenko, and R. Khokhlov: Sov. Phys. Acoust.23 (1977) 432.Google Scholar
  10. [10]
    V.E. Gusev: Sov. Phys. Acoust.30 (1984) 121.Google Scholar
  11. [11]
    V.P. Kuznetsov: Sov. Phys. Acoust.16 (1971) 467.Google Scholar
  12. [12]
    S. Makarov and M. Ochmann: ACUSTICA — Acta Acustica83 (1997) 197.zbMATHGoogle Scholar
  13. [13]
    M.F. Hamilton and D.T. Blackstock:Nonlinear Acoustic, Academic Press, USA, 1990.Google Scholar
  14. [14]
    A.H. Nayfeh:Introduction to Perturbation Techniques, John Wiley & Sons, USA, 1981.zbMATHGoogle Scholar
  15. [15]
    V.E. Gusev, H. Bailliet, P. Lotton, and M. Bruneau: Wave Motion29 (1999) 211.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    O.V. Rudenko, C.M. Hedberg, and B.O. Enflo: Acoust. Phys.47 (2001) 452.CrossRefADSGoogle Scholar
  17. [17]
    S.N. Makarov and E.V. Vatrushina: J. Acoust. Soc. Am.94 (1993) 1076.CrossRefADSGoogle Scholar
  18. [18]
    Ya.M. Zhileikin, T.M. Zhuravleva, and O.V. Rudenko: Sov. Phys. Acoust.26 (1980) 32.Google Scholar
  19. [19]
    O.V. Rudenko: Physics — Uspekhi38 (1995) 965.CrossRefMathSciNetGoogle Scholar
  20. [20]
    M.F. Hamilton and J.A. TenCate: J. Acoust. Soc. Am.84 (1988) 327.CrossRefADSGoogle Scholar
  21. [21]
    A.H. Nayfeh: J. Acoust. Soc. Am.57 (1975) 803.zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  • M. Bednařík
    • 1
  • P. Koníček
    • 1
  1. 1.Faculty of Electrical EngineeringCzech Technical University in PraguePraha 6Czech Republic

Personalised recommendations