Skip to main content
Log in

PT Symmetry in Quantum Field Theory

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The Hamiltonian H specifies the energy levels and the time evolution of a quantum theory. It is an axiom of quantum mechanics that H be Hermitian. The Hermiticity of H guarantees that the energy spectrum is real and that the time evolution is unitary (probability preserving). In this talk we investigate an alternative formulation of quantum mechanics in which the mathematical requirement of Hermiticity is replaced by the more physically transparent condition of space-time reflection (PT) symmetry. We show that if the PT symmetry of a Hamiltonian H is not broken, then the spectrum of H is real. Examples of PT-symmetric non-Hermitian Hamiltonians are H=p 2+ix 3 and H=p 2-x 4. The crucial question is whether PT-symmetric Hamiltonians specify physically acceptable quantum theories in which the norms of states are positive and the time evolution is unitary. The answer is that a Hamiltonian that has an unbroken PT symmetry also possesses a physical symmetry that we call C. Using C, we show how to construct an inner product whose associated norm is positive definite. The result is a new class of fully consistent complex quantum theories. Observables exhibit CPT symmetry, probabilities are positive, and the dynamics is governed by unitary time evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.M. Bender, S. Boettcher, and P.N. Meisinger: J. Math. Phys. 40 (1999) 2201.

    Google Scholar 

  2. C.M. Bender, D.C. Brody, L.P. Hughston, and B.K. Meister: Preprint (2003).

  3. C.M. Bender, P.N. Meisinger, and Q. Wang: J. Phys. A: Math. Gen. 36 (2003) 1029.

    Google Scholar 

  4. C.M. Bender and S. Boettcher: Phys. Rev. Lett. 80 (1998) 5243. 9)

    Google Scholar 

  5. P. Dorey, C. Dunning, and R. Tateo: J. Phys. A 34 (2001) L391; 5679.

    Google Scholar 

  6. G. Lévai and M. Znojil: J. Phys. A 33 (2000) 7165. C.M. Bender, G.V. Dunne, P.N. Meisinger, and M. Simsek: Phys. Lett. A 281 (2001) 311. B. Bagchi and C. Quesne: Phys. Lett. A 300 (2002) 18. D.T. Trinh: PhD Thesis, University of Nice-Sophia Antipolis (2002), and references therein.

    Google Scholar 

  7. A. Mostafazadeh: J. Math. Phys. 43 (2002) 205; 2814; 3944; preprint (math-ph/0203041). Z. Ahmed: Phys. Lett. A 294 (2002) 287. G.S. Japaridze: J. Phys. A 35 (2002) 1709. M. Znojil: Preprint (math-ph/0104012). A. Ramirez and B. Mielnik: Working Paper 2002.

    Google Scholar 

  8. C.M. Bender, S. Boettcher, and V.M. Savage: J. Math. Phys. 41 (2000) 6381. C.M. Bender, S. Boettcher, P.N. Meisinger, and Q. Wang: Phys. Lett. A 302 (2002) 286.

    Google Scholar 

  9. G.A. Mezincescu: J. Phys. A: Math. Gen. 33 (2000) 4911. C.M. Bender and Q. Wang: J. Phys. A 34 (2001) 3325.

    Google Scholar 

  10. P.A.M. Dirac: Proc. R. Soc. London A 180 (1942) 1.

    Google Scholar 

  11. C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. Lett. 89 (2002) 270401; Am. J. Phys. (in press).

    Google Scholar 

  12. C.M. Bender, P.N. Meisinger, and Q. Wang: J. Phys. A: Math. Gen. 36 (2003) 1973.

    Google Scholar 

  13. C.M. Bender, P.N. Meisinger, and Q. Wang: manuscript in preparation.

  14. C.M. Bender, M.V. Berry, and A. Mandilara: J. Phys. A 35 (2002) L467.

    Google Scholar 

  15. R.F. Streater and A.S. Wightman: PCT, Spin & Statistics, and all that, Benjamin, New York, 1964.

    Google Scholar 

  16. T.T. Wu: Phys. Rev. 115 (1959) 1390.

    Google Scholar 

  17. T. Hollowood: Nucl. Phys. B 384 (1992) 523.

    Google Scholar 

  18. R. Brower, M. Furman, and M. Moshe: Phys. Lett. B 76 (1978) 213.

    Google Scholar 

  19. C.M. Bender, G.V. Dunne, and P.N. Meisinger: Phys. Lett. A 252 (1999) 272.

    Google Scholar 

  20. C.M. Bender, P. Meisinger, and H. Yang: Phys. Rev. D 63 (2001) 45001.

    Google Scholar 

  21. C.M. Bender, K.A. Milton, and V.M. Savage: Phys. Rev. D 62 (2000) 85001.

    Google Scholar 

  22. C.M. Bender and K.A. Milton: J. Phys. A: Math. Gen. 32 (1999) L87.

    Google Scholar 

  23. C.M. Bender and K.A. Milton: Phys. Rev. D 57 (1998) 3595.

    Google Scholar 

  24. C.M. Bender, S. Boettcher, H.F. Jones, P.N. Meisinger, and M. Simsek: Phys. Lett. A 291 (2001) 197.

    Google Scholar 

  25. F.J. Dyson: Phys. Rev. 85 (1952) 631.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, C.M. PT Symmetry in Quantum Field Theory. Czechoslovak Journal of Physics 54, 13–28 (2004). https://doi.org/10.1023/B:CJOP.0000014363.56526.41

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CJOP.0000014363.56526.41

Navigation