Skip to main content
Log in

Sex Chromosome Differentiation in Some Species of Lepidoptera (Insecta)

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Sex chromosome morphology of eight Lepidoptera species was studied, exploiting predominantly the pachytene stage when chromosomes display a remarkable chromomere pattern. Six species had a WZ/ZZ sex chromosome system, one species a W1W2Z/ZZ system and one species was of the Z/ZZ type. Much like XY chromosomes in groups with male heterogamety, the lepidopteran sex chromosomes showed various degrees of structural differentiation. Differences between Z and W chromomere patterns ranged from undetectable to obviously non-homologous. A common property of the W chromosomes (the W1 in the W1W2Z/ZZ system) was the possession of a block of heterochromatin. The heterochromatin block comprised a small or a large segment of the W or even the entire W, depending on the species. Segments with apparent structural homology are evolutionarily young parts of the sex chromosomes — recently fused autosomes that have not had sufficient time for differentiation. The ‘primitive’ lepidopteran species Micropterix calthella had a Z/ZZ sex chromosome system. This supports the hypothesis that the lepidopteran W chromosome came into being at the base of the ‘advanced’ Lepidoptera; it was presumably an autosome whose homologue fused to the original Z chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anisimov AI (1988) Investigations on sex linked recessive lethal mutations as a possible mechanism for the genetic control of lepidopterous pests. In: Ramesh GV, ed. Modern Insect Control: Nuclear Techniques and Biotechnology. Vienna: International Atomic Energy Agency, pp. 65–76.

    Google Scholar 

  • Bartlett A (1988) Induction and use of sex linked lethal mutations in the pink bollworm. In: Ramesh GV, ed. Modern Insect Control: Nuclear Techniques and Biotechnology. Vienna: International Atomic Energy Agency, pp. 85–96.

    Google Scholar 

  • Bull JJ (1983) Evolution of Sex Determining Mechanisms. Menlo Park, CA: Benjamin/Cummings.

    Google Scholar 

  • Charlesworth B (1996) The evolution of chromosomal sex determination and dosage compensation. Current Biology 6: 149–162.

    Google Scholar 

  • Clarke CA, Mittwoch U, Traut W (1997) Linkage and cytogenetic studies in the swallowtail butterflies Papilio polyxenes Fab. and Papilio machaon L. and their hybrids. Proc R Soc Lond B 198: 385–399.

    Google Scholar 

  • Cretschmar M (1928) Das Verhalten der Chromosome bei der Spermatogenese von Orgyia thyellina Btl. and antiqua L., sowie eines ihrer Bastarde. - Z Zellforsch Mikrosk Anat 7: 290–399.

    Google Scholar 

  • Dederer P (1928) Variations in chromosome number in the spermatogenesis of Philosamia cynthia. J Morphol Physiol 45: 599–613.

    Google Scholar 

  • Doira H (1986) Linkage map of Bombyx mori - revised in 1986. Sericologia 26: 485–488.

    Google Scholar 

  • Ennis TJ (1976) Sex chromatin and chromosome numbers in Lepidoptera. Can J Genet Cytol 18: 119–130.

    Google Scholar 

  • Federley H (1932) Die Bedeutung der Kreuzung für die Evolution. Jena Z Naturwissenschaft 67: 364–386.

    Google Scholar 

  • Federley H (1938) Chromosomenzahlen finnländischer Lepidopteren. I. Rhopalocera. Hereditas 24: 397–464.

    Google Scholar 

  • Goldschmidt R (1934) Lymantria. Bibliographia Genetica 21: 1–186.

    Google Scholar 

  • Goldschmidt RB, Pariser K (1923) Triploide Intersexe bei Schmetterlingen. Biol. Zbl. 43: 446–452.

    Google Scholar 

  • John B (1988) The biology of heterochromatin. In Verma RS, ed. Heterochromatin, Molecular and Structural Aspects. Cambridge: Cambridge University Press, pp. 1–47.

    Google Scholar 

  • Kawamura N (1988) The egg size determining gene, Esd, is a unique morphological marker on the W chromosome of Bombyx mori. Genetica 76: 195–201.

    Google Scholar 

  • Kawamura N, Niino T (1991) Identification of the Z-W bivalent in the silkworm, Bombyx mori. Genetica 83: 121–123.

    Google Scholar 

  • Kiauta B, Kiauta MAJE (1979) Ecology, case structure, larval morphology and chromosomes of the caddis-fly, Allogamus auricollis (Pictet, 1834), with a discussion on the variation of recombination indices in the Stenophylacini (Trichoptera, Integripalpia, Limnephilidae), Genetica 50: 119–126.

    Google Scholar 

  • Marec F (1990) Genetic control of pest Lepidoptera: induction of sex-linked recessive lethal mutations in Ephestia kuehniella (Pyralidae). Acta Entomol Bohemoslov 87: 445–458.

    Google Scholar 

  • Marec F (1991) Genetic control of pest Lepidoptera: Construction of a balanced lethal strain in Ephestia kuehniella. Entomol Exp Appl 61: 271–283.

    Google Scholar 

  • Marec F (1996) Synaptonemal complexes in insects. Int J Insect Morphol Embryol 25: 205–233.

    Google Scholar 

  • Marec F, Traut W (1994) Sex chromosome pairing and sex chromatin bodies in W-Z translocation strains of Ephestia kuehniella (Lepidoptera). Genome 37: 426–435.

    Google Scholar 

  • Moses MJ, Poorman PA (1981) Symaptonemal complex analysis of chromosomal rearrangements II. Synaptic adjustment in a tandem duplication. Chromosoma 81: 519–535.

    Google Scholar 

  • Nilsson N-O, Löfstedt C, Dävring L (1988) Unusual sex chromosome inheritance in six species of small ermine moths (Yponomeuta, Yponomeutidae, Lepidoptera). Hereditas 108: 259–265.

    Google Scholar 

  • Ray-Chaudhuri P. Singh L, Sharma I (1971) Evolution of sex chromosomes and formation of W-chromatin in snakes. Chromosoma 33: 239–251.

    Google Scholar 

  • Robinson R (1971) Lepidoptera Genetics. Oxford: Pergamon Press.

    Google Scholar 

  • Seiler J (1914) Das Verhalten der Geschlechtschromosomen bei Lepidopteran. Nebst einem Beitrag zur Kenntnis der Eireifung, Samenreifung und Befruchtung. Arch Zellforsch 13: 159–269.

    Google Scholar 

  • Seiler J (1920) Geschlechtschromosomenuntersuchungen an Psychiden. I. Experimentelle Beeinflussung der geschlechtsbestimmenden Reifeteilung bei Talaeporia tubulosa Retz. Arch Zellforsch 15: 249–268.

    Google Scholar 

  • Seiler J (1925) Zytologische Vererbungsstudien an Schmetterlingen. I. Ergebnisse aus Kreuzungen von Schmetterlingsrassen mit verschiedener Chromosomenzahl. Arch. Julius Klaus-Stiftung für Vererbungs-Forschung 1: 63–117.

    Google Scholar 

  • Shvedov AN, Litvinova EM, Anisimov AI (1985) Induction by ethylmethanesulfonate and isolation of recessive sex-linked lethal mutations of codling moth. In: Proceedings of the All-Union Institute for Plant Protection: Genetical and Biophysical Methods in Plant Protection (in Russian). Leningrad: VIZR, p. 23–26.

    Google Scholar 

  • Solari AJ (1992) Equalization of Z and W axes in chicken and quail oocytes. Cytogenet Cell Genet 59: 52–56.

    Google Scholar 

  • Stefos K, Arrighi FE (1971) Heterochromatic nature of W chromosomes in birds. Exp Cell Res 68: 228–231.

    Google Scholar 

  • Strunnikov VA (1987) Genetic Methods of Selection and Sex Control in the Silkworm (in Russian). Moskva: Agropromizdat pp. 283–313.

    Google Scholar 

  • Suomalainen E (1966) Achiasmatische Oogenese bei Trichopteren. Chromosoma 18: 201–207.

    Google Scholar 

  • Suomalainen E (1969) On the sex chromosome trivalent in some Lepidoptera females. Chromosoma 28: 298–308.

    Google Scholar 

  • Traut W (1976) Pachytene mapping in the female silkworm, Bombyx mori L. Chromosoma 58: 275–284.

    Google Scholar 

  • Traut W (1977) A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera). Genetica 47: 135–142.

    Google Scholar 

  • Traut W (1994) Sex determination in the fly Megaselia scalaris, a model system for primary steps of sex chromosome evolution. Genetics 136: 1097–1105.

    Google Scholar 

  • Traut W, Clarke CA (1997) Karyotpe evolution by chromosome fusion in the moth genus Orgyia. Hereditas 126: 77–84.

    Google Scholar 

  • Traut W, Clarke CA (1996) Cytogenetics of a moth species with a low chromosome number, Orgyia thyellina. Hereditas 125: 277–283.

    Google Scholar 

  • Traut W, Marec F (1996) Sex chromatin in Lepidoptera. Quarterly Rev Biol 71: 239–256.

    Google Scholar 

  • Traut W, Mosbacher GC (1968) Geschlechtschromatin bei Lepidopteren. Chromosoma 25: 343–356.

    Google Scholar 

  • Traut W, Rathjens B (1973) Das W-Chromosom von Ephestia keuhniella (Lepidoptera) und die Ableitung des Geschlechtschromatins. Chromosoma 41: 437–446.

    Google Scholar 

  • Traut W, Weith A, Traut G (1986) Structural mutants of the W chromosome in Ephestia (Insecta, Lepidoptera). Genetica 70: 69–79.

    Google Scholar 

  • Wang YX, Marec F, Traut W (1993) The synaptonemal complex complement of the wax moth, Galleria mellonella. Hereditas 118: 113–119.

    Google Scholar 

  • Weith A, Traut W (1980) Synaptonemal complexes with associated chromatin in a moth, Ephestia kuehniella Z. The fine structure of the W chromosomal heterochromatin. Chromosoma 78: 275–291.

    Google Scholar 

  • Weith A, Traut W (1986) Synaptic adjustment, non-homologous pairing, and non-pairing of homologous segments in sex chromosome mutants of Ephestia kuehniella (Insecta, Lepidoptera). Chromosoma 94: 125–131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traut, W., Marec, F. Sex Chromosome Differentiation in Some Species of Lepidoptera (Insecta). Chromosome Res 5, 283–291 (1997). https://doi.org/10.1023/B:CHRO.0000038758.08263.c3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000038758.08263.c3

Navigation