Skip to main content
Log in

Kinetochore and heterochromatin domains of the fission yeast centromere

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Fission yeast centromeres are composed of two distinctive chromatin domains. The central domain nucleosomes contain the histone H3-like protein CENP-ACnp1. In contrast, the flanking repeats are coated with silent chromatin in which Swi6 (HP1) binds histone H3 methylated on lysine 9 that is induced by the action of the RNA interference pathway on non-coding centromeric transcripts. The overall structure is similar to that of metazoan centromeres where the kinetochore is embedded in surrounding heterochromatin. Kinetochore specific proteins associate with the central domain and affect silencing in that region. The flanking heterochromatin is required to recruit cohesin and mediate tight physical cohesion between sister centromeres. The loss of silencing that accompanies defects in heterochromatin has been invaluable as a tool in the investigation of centromere function. Both the heterochromatin and kinetochore regions are required for the de novo assembly of a functional centromere on DNA constructs, suggesting that heterochromatin may provide an environment that promotes kinetochore assembly within the central domain. The process is clearly epigenetically regulated. Fission yeast kinetochores associate with 2–4 microtubules, and flanking heterochromatin may be required to promote the orientation of multiple microtubule binding sites on one kinetochore towards the same pole and thus prevent merotelic orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allshire RC, Javerzat J-P, Redhead NJ, Cranston G (1994) Position effect variegation at fission yeast centromeres. Cell 76: 157–169.

    Article  PubMed  CAS  Google Scholar 

  • Allshire RC, Nimmo ER, Ekwall K et al.(1995) Mutations derepressingsilent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9: 218–233.

    PubMed  CAS  Google Scholar 

  • Appelgren H, Kniola B, Ekwall K (2003) Distinct centromere domain structures with separate functions demonstrated in live fission yeast Cells. J Cell Sci 116: 4035–4042.

    Article  CAS  Google Scholar 

  • Ayoub N, Goldshmidt I, Lyakhovetsky R, Cohen A (2000) A fission yeast repression element cooperates with centromerelike sequences and defines a mat silent domain boundary. Genetics 156: 983–994.

    PubMed  CAS  Google Scholar 

  • Ayoub N, Noma K, Isaac S, Kahan T, Grewal SI, Cohen A (2003) A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol Cell Biol 12: 4356–4370.

    Article  Google Scholar 

  • Bailis JM, Bernard P, Antonelli R, Allshire RC, ForsburgSL (2003) Hsk1-Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nat Cell Biol 5: 1111–1116.

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al.(2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Clarke L (2000) Fission yeast hoMologs of human CENP-B have redundant functions affecting Cell growth and chromosome segregation. Mol Cell Biol 20: 2852–2864.

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Ngan VK, Clarke L (1994) The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombecentromere. Mol Biol Cell 5: 747–761.

    PubMed  CAS  Google Scholar 

  • Bernard P, Hardwick K, Javerzat JP (1998) Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J Cell Biol 143: 1775–1787.

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC (2001) Requirement of heterochromatin for cohesion at centromeres. Science 294: 2539–2542.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell C, Martin KA, Greenall A, Pidoux A, Allshire RC, Whitehall SK (2004)The S. pombe HIRA-like protein, Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres. Mol Cell Biol 24: 4309–4320.

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002)Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2: 319–330.

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman IM, Drubin DG, Barnes G (2002)Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 157: 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Chen ES, Saitoh S, Yanagida M, Takahashi K (2003)A Cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol Cell 11: 175–187.

    Article  PubMed  CAS  Google Scholar 

  • Cimini D, Howell B, Maddox P, Khodjakov A, Degrassi F, Salmon ED (2001)Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue Cells. J Cell Biol 153: 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Baum M, Marschall LG, Ngan VK, Steiner NC (1993)Structure and function of Schizosaccharomyces pombe centromeres. Cold Spring Harb Symp Quant Biol 58: 687–695.

    PubMed  CAS  Google Scholar 

  • Cottarel G, Shero JH, Hieter P, Hegemann JH (1989)A 125-base-pair CEN6 DNA fragment is sufficient for complete meiotic and mitotic centromere functions in Saccharomyces cerevisiae. Mol Cell Biol 9: 3342–3349.

    PubMed  CAS  Google Scholar 

  • Cowieson NP, Partridge JF, Allshire RC, McLaughlin PJ (2000)Dimerisatio n of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Curr Biol 10: 517–525.

    Article  PubMed  CAS  Google Scholar 

  • Dawe RK, Richardson EA, Zhang X (2004)The simple ultrastructure of the maize kinetochore fits a two-domain model. Cytogenet Genome Res (in press).

  • Ding R, McDonald KL, McIntosh JR (1993)Three-d imensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J Cell Biol 120: 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Donze D, Kamakaka RT (2001)RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 20: 520–531.

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Javerzat J-P, Lorentz K, Schmidt H, Cranston G, Allshire R (1995)The chromo domain protein Swi6: a key component at fission yeast centromeres Science 269: 1429–1431.

    PubMed  CAS  Google Scholar 

  • Ekwall K, Nimmo ER, Javerzat J-P et al.(1996)Mutation s in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109: 2637-2648.

    Google Scholar 

  • Ekwall K, Olsson T, Turner BM, Cranston G, Allshire RC (1997)Transient inhibition of histone acetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Cranston G, Allshire RC (1999)Novel fission yeast mutants which alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 153: 1153–1169.

    PubMed  CAS  Google Scholar 

  • Elgin SC, Grewal SI (2003)Heterochroma tin: silence is golden. Curr Biol 13: R895–898.

    Article  PubMed  CAS  Google Scholar 

  • Fleig U, Sen-Gupta M, Hegemann JH (1996)Fission yeast mal2+ is required for chromosome segregation. Mol Cell Biol 16: 6169–6177.

    PubMed  CAS  Google Scholar 

  • Funabiki H, Hagan I, Uzawa S, Yanagida M (1993)Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976.

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Vardy L, Koonrugsa N, Toda T (2001)Fission yeast ch-TOG/XMAP215 hoMologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 20: 3389–3401.

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Koonrugsa N, Toda T (2002)Kinesin-lik e Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr Biol 12: 610–621.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LS (1981)Kinetochore structure and its role in chromosome orientation during the first meiotic division in male D. melanogaster. Cell 25: 591–602.

    Article  PubMed  CAS  Google Scholar 

  • Goshima G, Saitoh S, Yanagida M (1999)Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev 13: 1664–1677.

    PubMed  CAS  Google Scholar 

  • Grewal SI, Elgin SC (2002)Heterochroma tin: new possibilities for the inheritance of structure. Curr Opin Genet Dev 12: 178–187.

    Article  PubMed  CAS  Google Scholar 

  • Grewal SI, Klar AJ (1997)A recombinationally repressed region between mat2 and mat3 loci shares hoMology to centromeric repeats and regulates directionality of matingtype switching in fission yeast. Genetics 146: 1221–1238.

    PubMed  CAS  Google Scholar 

  • Grewal SI, Moazed D (2003)Heterochroma tin and epigenetic control of gene expression. Science 301: 798–802.

    Article  PubMed  CAS  Google Scholar 

  • Hahnenberger KM, Baum MP, Polizzi CM, Carbon J, Clarke L (1989)Constructio n of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 86: 577–581.

    Article  PubMed  CAS  Google Scholar 

  • Hahnenberger KM, Carbon J, Clarke L (1991)Identifica tion of DNA regions required for mitotic and meiotic functions within the centromere of Schizosaccharomyces pombe chromosome I. Mol Cell Biol 11: 2206–2215.

    PubMed  CAS  Google Scholar 

  • Irelan JT, Gutkin GI, Clarke L (2001)Functional redundancies, distinct localizations and interactions among three fission yeast hoMologs of centromere protein-B. Genetics 157: 1191–1203.

    PubMed  CAS  Google Scholar 

  • Javerzat JP, McGurk G, Cranston G et al.(1999)Defects in components of the proteasome enhance transcriptional silencing at fission yeast centromeres and impair chromosome segregation. Mol Cell Biol 19: 5155–5165.

    PubMed  CAS  Google Scholar 

  • Jin QW, Pidoux AL, Decker C, Allshire RC, Fleig U (2002) The Mal2p protein is an essential component of the fission yeast centromere. Mol Cell Biol 22: 7168–7183.

    Article  PubMed  CAS  Google Scholar 

  • Karpen GH, Allshire RC (1997)The case for epigenetic effects on centromere identity and function. Trends Genet 13: 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Kitajima TS, Kawashima SA, Watanabe Y (2004)The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427: 510–517.

    Article  PubMed  CAS  Google Scholar 

  • Kniola B, O'Toole E, McIntosh JR et al.(2001)The domain structure of centromeres is conserved from fission yeast to humans. Mol Biol Cell 12: 2767–2775.

    PubMed  CAS  Google Scholar 

  • Kuhn RM, Clarke L, Carbon J (1991) Clustered tRNA genes in Schizosaccharomyces pombe centromeric DNA sequence repeats. Proc Natl Acad Sci USA 88: 1306–1310.

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Huberman JA, Hurwitz J (1997) Purification and characterization of a CENP-B hoMologue protein that binds to the centromeric K-type repeat DNA of Schizosaccharomyces pombe. Proc Natl Acad Sci USA 94: 8427–8432.

    Article  PubMed  CAS  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AA et al.(2003) Suv39hmediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  • Leverson, JD, Huang HK, Forsburg SL, Hunter T (2002) The Schizosaccharomyces pombe aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis. Mol Biol Cell 13: 1132–1143.

    Article  PubMed  CAS  Google Scholar 

  • Marschall LG, Clarke L (1995) A novel cis-actingcentromeric DNA element affects S. pombe centromeric chromatin structure at a distance. J Cell Biol 128: 445–454.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Murakami S, Niwa O, Yanagida M (1990) Construction and characterization of centric circular and acentric linear chromosomes in fission yeast. Curr Genet 18: 331–335.

    Article  Google Scholar 

  • McEwen BF, Hsieh CE, Mattheyses AL, Rieder CL (1998) A new look at kinetochore structure in vertebrate somatic Cells usinghig h-pressure freezingand freeze substitution. Chromosoma 107: 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Measday V, Hailey DW, Pot I et al.(2002) Ctf3p, the Mis6 buddingyeast hoMolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore Genes Dev 16: 101–113.

    Article  PubMed  CAS  Google Scholar 

  • Mellone BG, Allshire RC (2003) Stretchingit: putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Mellone BG, Ball L, Suka N, Grunstein MR, Partridge JF, Allshire RC (2003) Centromere silencingand function in fission yeast is governed by the amino terminus of histone H3. Curr Biol 13: 1748–1757.

    Article  PubMed  CAS  Google Scholar 

  • Morishita J, Matsusaka T, Goshima G, Nakamura T, Tatebe H, Yanagida M (2001) Bir1/Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells 6: 743–763.

    Article  PubMed  CAS  Google Scholar 

  • Murakami Y, Huberman JA, Hurwitz J (1996) Identification, purification, and Molecular cloningof autonomously replicatingsequence-bindingprotein 1 from fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 93: 502–507.

    Article  PubMed  CAS  Google Scholar 

  • Musacchio A, Hardwick KG (2002) The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 3: 731–741.

    Article  PubMed  CAS  Google Scholar 

  • Nabetani A, Koujin T, Tsutsumi C Haraguchi T, Hiraoka Y (2001) A conserved protein, Nuf2, is implicated in connectingthe centromere to the spindle duringchromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma 110: 322–334.

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Lee JK, Hurwitz J et al.(2002) Fission yeast CENP-B hoMologs nucleate centromeric heterochromatin by promotingheterochro matin-specific histone tail modifications. Genes Dev 16: 1766–1778.

    Article  PubMed  CAS  Google Scholar 

  • Nakaseko Y, Goshima G, Morishita J, Yanagida M (2001) M phase-specific kinetochore proteins in fission yeast: microtubule-associatingDis1 and Mtc1 display rapid separation and segregation during anaphase. Curr Biol 11: 537–549.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Klar AJ, Grewal SI (2000) A chromodomain protein, Swi6, performs imprintingfunctio ns in fission yeast duringmitosis and meiosis. Cell. 101: 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2002) Segregating sister genomes: the Molecular Biology of chromosome separation. Science 297: 559–565.

    Article  PubMed  CAS  Google Scholar 

  • Neuwald AF, Poleksic A (2000) PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual slidingDNA clamp and of beta-propellers in UV-damaged DNA-bindin0g protein. Nucl Acids Res 28: 3570–3580.

    Article  PubMed  CAS  Google Scholar 

  • Ngan VK, Clarke L (1997) The centromere enhancer mediates centromere activation in Schizosaccharomyces pombe. Mol Cell Biol 17: 3305–3314.

    PubMed  CAS  Google Scholar 

  • Nishihashi A, Haraguchi T, Hiraoka Y et al.(2002) CENP-I is essential for centromere function in vertebrate Cells. Dev Cell 2: 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Niwa O, Matsumoto T, Yanagida M (1986) Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Mol Gen Genet 203: 397–405.

    Article  CAS  Google Scholar 

  • Niwa O, Matsumoto T, Chikashige Y, Yanagida M (1989) Characterization of Schizosaccharomyces pombe minichromosome deletion derivatives and a functional allocation of their centromere. EMBO J 8: 3045–3052.

    PubMed  CAS  Google Scholar 

  • Noma K, Allis CD, Grewal SI (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293: 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S et al.(2002) Recruitment of cohesin to heterochromatic regions by Swi6/ HP1 in fission yeast. Nat Cell Biol 4: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreadingin a complex centromere. Genes Dev 14: 783–791.

    PubMed  CAS  Google Scholar 

  • Partridge JF, Scott KS, Bannister AJ, Kouzarides T, Allshire RC. (2002) Cis-actingDNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencingfactors and cohesion to an ectopic site. Curr Biol 12: 1652–1660.

    Article  PubMed  CAS  Google Scholar 

  • Perrod S, Gasser SM (2003) Long-range silencing and position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci 60: 2303–2318.

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Hagan IM (2003) S. pombe aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr Biol 13: 590–597.

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Paris J, Willer M, Philippe M, Hagan IM (2001) The S. pombe aurora-related kinase Ark1 associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. J Cell Sci 114: 4371–4384.

    PubMed  CAS  Google Scholar 

  • Petronczki M, Siomos MF, Nasmyth K (2003) Un menage a quatre: the MolecularBiology of chromosome segregation in meiosis. Cell 112: 423–440.

    Article  PubMed  CAS  Google Scholar 

  • Pidoux A, Allshire R (2003) Chromosome segregation: clampingdown on deviant orientations. Curr Biol 13: R385–R387.

    Article  PubMed  CAS  Google Scholar 

  • Pidoux AL, Uzawa S, Perry PE, Cande WZ, Allshire RC (2000) Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast. J Cell Sci 113: 4177–4191.

    PubMed  CAS  Google Scholar 

  • Pidoux AL, Richardson W, Allshire RC (2003) Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol 161: 295–307.

    Article  PubMed  CAS  Google Scholar 

  • Polizzi C, Clarke L (1991) The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function. J Cell Biol 112: 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Rabitsch KP, Gregan J, Schleiffer A, Javerzat JP, Eisenhaber F, Nasmyth K (2004) Two fission yeast hoMologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr Biol 14: 287–301.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan S, Balasubramanian MK (2002) Schizosaccharomyces pombe Bir1p, a nuclear protein that localizes to kinetochores and the spindle midzone, is essential for chromosome condensation and spindle elongation during mitosis. Genetics 160: 445–456.

    PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O'Carroll D et al.(2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Sadaie M, Naito T, Ishikawa F (2003) Stable inheritance of telomere chromatin structure and function in the absence of telomeric repeats. Genes Dev 17: 2271–2282.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh S, Takahashi K, Yanagida M (1997) Mis6, a fission yeast inner centromere protein, acts duringG1/S and forms specialized chromatin required for equal segregation. Cell 90: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Schramke V, Allshire R (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301: 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Schramke V, Allshire R (2004) Those interferinglittle RNAs! Silencingand eliminatingchromatin. Curr Opin Genet Dev 14: 174–180.

    Article  PubMed  CAS  Google Scholar 

  • Steiner NC, Clarke L (1994) A novel epigenetic effect can alter centromere function in fission yeast. Cell 79: 865–874.

    Article  PubMed  CAS  Google Scholar 

  • Steiner NC, Hahnenberger KM, Clarke L (1993) Centromeres of the fission yeast Schizosaccharomyces pombe are highly variable genetic loci. Mol Cell Biol 13: 4578–4587.

    PubMed  CAS  Google Scholar 

  • Takahashi K, Murakami S, Chikashige Y, Niwa O, Yanagida M (1991) A large number of tRNA genes are symmetrically located in fission yeast centromeres. J Mol Biol 218: 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Yamada H, Yanagida M (1994) Fission yeast minichromosome loss mutants mis cause lethal aneuploidy and replication abnormality. Mol Biol Cell 5: 1145–1158.

    PubMed  CAS  Google Scholar 

  • Takahashi K, Murakami S, Chikashige Y, Funabiki H, Niwa O, Yanagida M (1992) A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. Mol Biol Cell 3: 819–835.

    PubMed  CAS  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizinga CENP-A-like protein in fission yeast. Science 288: 2215–2219.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda Y, Furuya K, Goshima G, Nagao K, Takahashi K, Yanagida M (2002) Requirement of chromatid cohesion proteins rad21/scc1 and mis4/scc2 for normal spindlekinetochore interaction in fission yeast. Curr Biol 12: 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Troxell CL, Sweezy MA, West RR et al.(2001) pkl1+ and klp2+:Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis.Mol Biol Cell 12: 3476–3488.

    PubMed  CAS  Google Scholar 

  • Verdel A, Jia S, Gerber S et al.(2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303: 672–676.

    Article  PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencingand histone H3 lysine-9 methylation by RNAi. Science 297: 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  • Volpe T, Schramke V, Hamilton GL et al.(2003) RNA interference is required for normal centromere function. Chromosome Res 11: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • West RR, Malmstrom T, McIntosh JR (2002) Kinesins klp5+ and klp6+ are required for normal chromosome movement in mitosis. J Cell Sci 115: 931–940.

    PubMed  CAS  Google Scholar 

  • Wigge PA, Kilmartin JV (2001) The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 152: 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Winey M, Mamay CL, O'Toole ET et al.(1995) Threedimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129: 1601–1615.

    Article  PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA et al.(2002). The genome sequence of Schizosaccharomyces pombe. Nature 415: 871–880.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidoux, A.L., Allshire, R.C. Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12, 521–534 (2004). https://doi.org/10.1023/B:CHRO.0000036586.81775.8b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000036586.81775.8b

Navigation