Skip to main content
Log in

The roles of histone modifications and small RNA in centromere function

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Here, epigenetic regulation of centromeric chromatin in fission yeast (Schizosaccharomyces pombe) is reviewed, focussing on the role of histone modifications and the link to RNA interference (RNAi). Fission yeast centromeres are organized into two structurally and functionally distinct domains, both of which are required for centromere function. The central core domain anchors the kinetochore structure while the flanking heterochromatin domain is important for sister centromere cohesion. The chromatin structure of both domains is regulated epigenetically. In the central core domain, the histone H3 variant Cnp1CENP-A plays a key role. In the flanking heterochromatin domain, histones are kept underacetylated by the histone deacetylases (HDACs) Clr3, Clr6 and Sir2, and methylated by Clr4 methyltransferase (HMTase) to create a specific binding site for the Swi6 protein. Swi6 then directly mediates cohesin binding to the centromeric heterochromatin. Recently, a surprising link was made between heterochromatin formation and RNAi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allshire RC, Nimmo ER, Ekwall K et al. (1995) Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev 9: 218–233.

    PubMed  CAS  Google Scholar 

  • Appelgren H, Kniola B, Ekwall K (2003) Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells. J Cell Sci 116: 4035–4042.

    Article  PubMed  CAS  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al. (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410: 120–124.

    Article  PubMed  CAS  Google Scholar 

  • Bernard P, Maure JF, Partridge JF et al. (2001) Requirement of heterochromatin for cohesion at centromeres. Science 11: 11.

    Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM et al. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Bjerling P, Silverstein RA, Thon G et al. (2002) Functional divergence between histone deacetylases in fission yeast by distinct cellular localization and in vivo specificity. Mol Cell Biol 22: 2170–2181.

    Article  PubMed  CAS  Google Scholar 

  • Carbon J, Clarke L (1990) Centromere structure and function in budding and fission yeasts. New Biol 2: 10–19.

    PubMed  CAS  Google Scholar 

  • Chen ES, Saitoh S, Yanagida M et al. (2003a) A cell cycleregulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol Cell 11: 175–187.

    Article  PubMed  CAS  Google Scholar 

  • Chen ES, Yanagida M, Takahashi K (2003b) Does a GATA factor make the bed for centromeric nucleosomes? Cell Cycle 2: 277–278.

    PubMed  CAS  Google Scholar 

  • Chikashige Y, Kinoshita N, Nakaseko Y et al. (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57: 739–751.

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol 10: 1863–1872.

    PubMed  CAS  Google Scholar 

  • Clarke L, Amstutz H, Fishel B et al. (1986) Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA 83: 8253–8257.

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Javerzat JP, Lorentz A et al. (1995) The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269: 1429–1431.

    PubMed  CAS  Google Scholar 

  • Ekwall K, Nimmo ER, Javerzat JP et al. (1996) Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J Cell Sci 109: 2637–2648.

    PubMed  CAS  Google Scholar 

  • Ekwall, K, Olsson T, Turner BM et al. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91: 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  • Ekwall K, Cranston G, Allshire RC (1999) Fission yeast mutants that alleviate transcriptional silencing in centromeric flanking repeats and disrupt chromosome segregation. Genetics 153: 1153–1169.

    PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.

    Article  PubMed  CAS  Google Scholar 

  • Funabiki H, Hagan I, Uzawa S et al. (1993) Cell cycledependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol 121: 961–976.

    Article  PubMed  CAS  Google Scholar 

  • Garcia MA, Vardy L, Koonrugsa N et al. (2001) Fission yeast ch-TOG/XMAP215 homologue Alp14 connects mitotic spindles with the kinetochore and is a component of the Mad2-dependent spindle checkpoint. EMBO J 20: 3389–3401.

    Article  PubMed  CAS  Google Scholar 

  • Hall IM, Noma K, Grewal SI (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA 100: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D et al. (2000) An RNAdirected nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293–296.

    Article  PubMed  CAS  Google Scholar 

  • Jin QW, Pidoux AL, Decker C et al. (2002) The mal2p protein is an essential component of the fission yeast centromere. Mol Cell Biol 22: 7168–7183.

    Article  PubMed  CAS  Google Scholar 

  • Kniola B, O'Toole E, McIntosh JR et al. (2001) The domain structure of centromeres is conserved from fission yeast to humans. Mol Biol Cell 12: 2767–2775.

    PubMed  CAS  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AA et al. (2003) Suv39hmediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13: 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  • Leverson JD, Huang HK, Forsburg SL et al. (2002) The Schizosaccharomyces pombe aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis. Mol Biol Cell 13: 1132–1143.

    Article  PubMed  CAS  Google Scholar 

  • Mellone BG, Allshire RC (2003) Stretching it: putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Mellone, BG, Ball L, Suka N et al. (2003) Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3. Curr Biol 13: 1748–1757.

    Article  PubMed  CAS  Google Scholar 

  • Morishita J, Matsusaka T, Goshima G et al. (2001) Bir1/ Cut17 moving from chromosome to spindle upon the loss of cohesion is required for condensation, spindle elongation and repair. Genes Cells 6: 743–763.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H, Lee JK, Hurwitz J et al. (2002) Fission yeast CENP-B homologs nucleate centromeric heterochromatin S. pombe centromeres-modified histones and RNAi 541 by promoting heterochromatin-specific histone tail modifi-cations. Genes Dev 16: 1766–1778.

    Article  PubMed  CAS  Google Scholar 

  • Nakaseko Y, Goshima G, Morishita J et al. (2001) M phasespecific kinetochore proteins in fission yeast: microtubuleassociating Dis1 and Mtc1 display rapid separation and segregation during anaphase. Curr Biol 11: 537–549.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD et al. (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292: 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama J, Xiao G, Noma K et al. (2003) Alp13, an MRG family protein, is a component of fission yeast Clr6 histone deacetylase required for genomic integrity. EMBO J 22: 2776–2787.

    Article  PubMed  CAS  Google Scholar 

  • Nonaka N, Kitajima T, Yokobayashi S et al. (2002) Recruitment of cohesin to heterochromatic regions by Swi6/ HP1 in fission yeast. Nat Cell Biol 4: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14: 783–791.

    PubMed  CAS  Google Scholar 

  • Partridge JF, Scott KS, Bannister AJ et al. (2002) cis-acting DNA from fission yeast centromeres mediates histone H3 methylation and recruitment of silencing factors and cohesin to an ectopic site. Curr Biol 12: 1652–1660.

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Hagan IM (2003) S. pombe aurora kinase/survivin is required for chromosome condensation and the spindle checkpoint attachment response. Curr Biol 13: 590–597.

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Paris J, Willer M et al. (2001) The S. pombe aurora-related kinase Ark1 associates with mitotic structures in a stage dependent manner and is required for chromosome segregation. J Cell Sci 114: 4371–4384.

    PubMed  CAS  Google Scholar 

  • Pidoux, AL, Richardson W, Allshire RC (2003) Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J Cell Biol 161: 295–307.

    Article  PubMed  CAS  Google Scholar 

  • Provost P, Silverstein RA, Walfridsson J et al. (2002) Dicer is required for chromosome segregation and gene silencing in fission yeast cells. P.N.A.S. 99: 16648–16653.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan S, Balasubramanian MK (2002) Schizosaccharomyces pombe Bir1p, a nuclear protein that localizes to kinetochores and the spindle midzone, is essential for chromosome condensation and spindle elongation during mitosis. Genetics 160: 445–456.

    PubMed  CAS  Google Scholar 

  • Rea S, Eisenhaber F, O'Carroll D et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406: 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Rudert F, Bronner S, Garnier JM et al. (1995) Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm Genome 6: 76–83.

    Article  PubMed  CAS  Google Scholar 

  • Saitoh S, Takahashi K, Yanagida M (1997) Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 90: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Schramke V, Allshire R (2003) Hairpin RNAs and retrotransposon LTRs effect RNAi and chromatin-based gene silencing. Science 301: 1069–1074.

    Article  PubMed  CAS  Google Scholar 

  • Shankaranarayana GD, Motamedi MR, Moazed D et al. (2003) Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr Biol 13: 1240–1246.

    Article  PubMed  CAS  Google Scholar 

  • Silverstein RA, Ekwall K (2003) Similar mechanisms drive centromeric silencing and gene repression. Cell Cycle 2: 73–75.

    PubMed  CAS  Google Scholar 

  • Silverstein RA, Richardson W, Levin H et al. (2003) A new role for the transcriptional corepressor SIN3; regulation of centromeres. Curr Biol 13: 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288: 2215–2219.

    Article  PubMed  CAS  Google Scholar 

  • Verdel A, Jia S, Gerber S et al. (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303: 672–676.

    Article  PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM et al. (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297: 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  • Volpe T, Schramke V, Hamilton GL et al. (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA et al. (2000) RNAi: doublestranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Ekwall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekwall, K. The roles of histone modifications and small RNA in centromere function. Chromosome Res 12, 535–542 (2004). https://doi.org/10.1023/B:CHRO.0000036584.40567.e5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000036584.40567.e5

Navigation