Chromosome Research

, Volume 12, Issue 3, pp 225–237 | Cite as

Transcriptional repression mechanisms of nucleolus organizer regions (NORs) in humans and chimpanzees

  • Ana Karina Zavala Guillén
  • Yuriko Hirai
  • Tetsuya Tanoue
  • Hirohisa Hirai


Polymorphisms related to transcriptional inactivation of nucleolus organizer regions (NORs) have long been described in many animals, particularly humans. However, the precise aetiology of such variations is not always clear. We conducted analyses to investigate the repression mechanisms in humans and chimpanzees using FISH (fluorescence in situ hybridisation) with 18 S rDNA, Ag-NOR (silver nitrate) staining, C-banding, and the in situ nick translation technique with the HpaII restriction enzyme. Examination of 48 humans and 46 chimpanzees suggested that there are at least three different mechanisms that produce inactivation of NORs. These include: (1) elimination of rDNA; (2) DNA methylation; (3) gene silencing due to position effects induced by heterochromatin (C-bands) and/or telomeres.

chimpanzees DNA loss humans methylation NOR inactivation position effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Assum G, Gartmann C, Schempp W, Wöhr G (1994) Evolution of the chAB4 multisequence family in primates. Genomics 21: 34-41.PubMedCrossRefGoogle Scholar
  2. Assum G, Pasantes J, Gläser B, Schempp W, Wöhr G (1998) Concerted evolution of members of the multisequence family chAB4 located on various nonhomologous chromosomes. Mamm Genome 9: 58-63.PubMedCrossRefGoogle Scholar
  3. Bass HW, Marshall WF, Sedat JW, Agard DA, Cande WZ (1997) Telomeres cluster de novo before the initiation of synapsis: a three-dimensional spatial analysis of telomere positions before and during meiotic prophase. J Cell Biol 137: 5-18.PubMedCrossRefGoogle Scholar
  4. de Capoa A, Aleixandre C, Felli MP et al. (1991) Inheritance of ribosomal gene activity and level of DNA methylation in individual gene clusters in a three generation family. Hum Genet 88: 146-152.PubMedGoogle Scholar
  5. Ferraro M, Prantera G (1988) Human NORs show correlation between transcriptional activity, DNase I sensitivity, and hypomethylation. Cytogenet Cell Genet 47: 58-61.PubMedGoogle Scholar
  6. Ghosh S (1976) The nucleolar structure. Int Rev Cytol 44: 1-28.PubMedCrossRefGoogle Scholar
  7. Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53: 37-50.PubMedCrossRefGoogle Scholar
  8. Greig GM, Willard HF (1992) ?-satellite DNA: characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes. Genomics 12: 573-580.PubMedCrossRefGoogle Scholar
  9. Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69: 3394-3398.PubMedCrossRefGoogle Scholar
  10. Henderson AS, Atwood KC, Warburton D (1976) Chromosomal distribution of rDNA in Pan paniscus, Gorilla gorilla beringei and Symphalangus syndactylus: comparison to related primates. Chromosoma 59: 147-15.PubMedCrossRefGoogle Scholar
  11. Hirai H (2001) Relationship of telomere sequence and constitutive heterochromatin in the human and apes as detected by PRINS. Meth Cell Sci 23: 29-35.CrossRefGoogle Scholar
  12. Hirai H, LoVerde PT (1995) FISH techniques for constructing physical maps on schistosome chromosomes. Parasitol Today 8: 310-314.CrossRefGoogle Scholar
  13. Hirai H, Hirata M, Aoki Y, Tanaka M, Imai HT (1996) Chiasma analyses of the parasite flukes, Schistosoma and Paragonimus (Trematoda), by using the chiasma distribution graph. Genes Genet Syst 71: 181-188.CrossRefGoogle Scholar
  14. Hirai H, Hasegawa Y, Kawamoto Y, Tokita E (1998) Tandem duplication of nucleolus organizer region (NOR) in the Japanese macaque Macaca fuscata fuscata. Chromosome Res 6: 191-197.PubMedCrossRefGoogle Scholar
  15. Hirai H, Taguchi T, Godwin AK (1999) Genomic differentiation of 18S ribosomal DNA and ?-satellite DNA in the hominoid and its evolutionary aspects. Chromosome Res 7: 531-540.PubMedCrossRefGoogle Scholar
  16. Hirai H, Hirai Y, Kawamoto Y, Endo H, Kimura J, Rerkamnuaychoke W (2002) Cytogenetic differentiation of two sympatric tree shrew taxa found in the southern part of the Isthmus of Kra. Chromosome Res 10: 313-327.PubMedCrossRefGoogle Scholar
  17. Howell WM, Denton TE, Diamond JR (1975) Differential staining of the satellite regions of human acrocentric chromosomes. Experientia 15: 260-262.CrossRefGoogle Scholar
  18. Imai HT, Maruyama T, Gojobori T, Inoue Y, Crozier RH (1986) Theoretical bases for karyotype evolution. I. The minimum-interaction hypothesis. Am Nat 128: 900-920.CrossRefGoogle Scholar
  19. Imai HT, Wada MY, Hirai H, Matsuda Y, Tsuchiya K (1999) Cytological, genetic and evolutionary functions of chiasmata based on chiasma graph analysis. J Theor Biol 198: 239-257.PubMedCrossRefGoogle Scholar
  20. Markovic VD, Worton RG, Berg JM (1978) Evidence for the inheritance of silver-stained nucleolus organizer regions. Hum Gent 41: 181-187.Google Scholar
  21. Meneveri R, Agresti A, Marozzi A et al. (1993) Molecular organization and chromosomal location of human GC-rich heterochromatic blocks. Gene 123: 227-234.PubMedCrossRefGoogle Scholar
  22. Meneveri R, Agresti A, Rocchi M, Marozzi A, Ginelli E (1995) Analysis of GC-rich repetitive nucleotide sequences in great apes. J Mol Evol 40: 405-412.PubMedCrossRefGoogle Scholar
  23. Mikelsaar AV, Schmid M, Krone W, Schwarzacher HG, Schneld W (1977a) Frequency of Ag-stained nucleolus organizer regions in the acrocentric chromosomes of man. Hum Genet 37: 73-77.PubMedCrossRefGoogle Scholar
  24. Mikelsaar AV, Schwarzacher HG, Schnedl W, Wagenbichler P (1977b) Inheritance of Ag-stainability of nucleolus organizer regions: investigation in 7 families with trisomy 21. Hum Genet 38: 183-188.PubMedCrossRefGoogle Scholar
  25. Ofir R, Wong ACC, McDermid HE, Skorecki KL, Selig S (1999) Position effect of human telomeric repeats on replication timing. Proc NatlAcad Sci USA 96: 11434-11439.CrossRefGoogle Scholar
  26. O'Neill RJW, O'Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393: 68-72.PubMedCrossRefGoogle Scholar
  27. Roussel P, Hernandez-Verdun D (1994) Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp Cell Res 214: 465-472.PubMedCrossRefGoogle Scholar
  28. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75: 304-306.PubMedCrossRefGoogle Scholar
  29. Sumner AT (1990) Chromosome banding. London: Unwin Hyman.Google Scholar
  30. Sumner AT (2003) Chromosomes: organization and function. Oxford: Blackwell.Google Scholar
  31. Tantravahi R, Miller DA, Dev VG, Miller OJ (1976) Detection of nucleolus organizer regions in chromosomes of human, chimpanzee, gorilla, orangutan and gibbon. Chromosoma 56: 15-27.PubMedCrossRefGoogle Scholar
  32. Tantravahi U, Breg WR, Wertelecki V, Erlanger BF, Miller OJ (1981) Evidence for methylation of inactive human rRNA genes in amplified regions. Hum Genet 56: 315-320.PubMedCrossRefGoogle Scholar
  33. Wada MY, Imai HT (1995) Theoretical analyses of chiasmata using a novel chiasmagraph method applied to Chinese hamsters, mice, and dog. Jpn J Genet 70: 233-265.PubMedCrossRefGoogle Scholar
  34. Wakimoto BT (1998) Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93: 321-324.PubMedCrossRefGoogle Scholar
  35. Wallrath LL (1998) Unfolding the mysteries of heterochromatin. Curr Opin Genet Devel 8: 147-153.CrossRefGoogle Scholar
  36. Whitehead CM, Winkfein RJ, Fritzler MJ, Rattner JB (1997) ASE-1: a novel protein of the fibrillar centers of the nucleolus and nucleolus organizer region of mitotic chromosomes. Chromosoma 106: 493-502.PubMedCrossRefGoogle Scholar
  37. Wilson GN (1982) The structure and organization of human ribosomal genes. In: XH. Bush and L. Rothblum, eds. The cell nucleus, Vol. X. New York: Academic Press, pp 287-318.Google Scholar
  38. Zakian VA (1995) Saccharomyces telomeres: function, structure, and replication. In: EH. Blackburn and CW. Greider, eds. Telomeres. New York: Cold Spring Harbor Laboratory Press, pp 107-137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ana Karina Zavala Guillén
    • 1
  • Yuriko Hirai
    • 1
  • Tetsuya Tanoue
    • 2
  • Hirohisa Hirai
    • 1
  1. 1.Primate Research InstituteKyoto University, InuyamaAichiJapan; Tel
  2. 2.Kumamoto Primate Research ParkSanwa Kagaku Kenkyusho Co., Ltd.KumamotoJapan

Personalised recommendations