Skip to main content

Behaviour of ring bivalents in holokinetic systems: Alternative sites of spindle attachment in Pachylis argentinus and Nezara viridula (Heteroptera)

Abstract

Heteropteran chromosomes are holokinetic; during mitosis, sister chromatids segregate parallel to each other but, during meiosis, kinetic activity is restricted to one pair of telomeric regions. This meiotic behaviour has been corroborated for all rod bivalents. For ring bivalents, we have previously proposed that one of the two chiasmata releases first, and a telokinetic activity is also achieved.

In the present work we analyse the meiotic behaviour of ring bivalents in Pachylis argentinus (Coreidae) and Nezara viridula (Pentatomidae) and we describe for the first time the chromosome complement and male meiosis of the former (2n=12+2m+X0, pre-reduction of the X). Both species possess a large chromosome pair with a secondary constriction which is a nucleolus organizer region as revealed by in-situ hybridization. Here we propose a new mode of segregation for ring bivalents: when the chromosome pair bears a secondary constriction, it is not essential that one of the chiasmata releases first since these regions or repetitive DNA sequences adjacent to them become functional as alternative sites for microtubule attachment and they undertake chromosome segregation to the poles during anaphase I.

This is a preview of subscription content, access via your institution.

References

  • Bizzaro D, Barbolini E, Mandrioli M, Mazzoni E, Manicardi GC (1999) Cytogenetic characterization of the holocentric chromosomes in the aphids Myzus varians and Myzus cerasi. Caryologia 52: 81–85.

    Google Scholar 

  • Bressa MJ, Papeschi AG, Larramendy ML (2001a) Meiotic studies in Lygaeus alboornatus Blanchard (Heteroptera, Lygaeidae: Lygaeinae). Caryologia 55: 15–19.

    Google Scholar 

  • Bressa MJ, Papeschi AG, Mola LM, Larramendy ML (2001b) Autosomal univalents as a common meiotic feature in Jadera haematoloma and Jadera sanguinolenta (Heteroptera: Rhopalidae: Serinethinae). Eur J Entomol 98: 151–157.

    Google Scholar 

  • Buck RC (1968) Mitosis and meiosis in Rhodnius prolixus: the fine structure of the spindle and diffuse kinetochore. J Ultrastruct Res 18: 489–501.

    Article  Google Scholar 

  • Camacho JPM, Belda J, Cabrero J (1985) Meiotic behaviour of the holocentric chromosomes of Nezara viridula (Insecta, Heteroptera) analysed by C-banding and silver impregnation. Can J Genet Cytol 27: 490–497.

    Google Scholar 

  • Comings DE, Okada TA (1972) Holocentric chromosomes in Oncopeltus: kinetochore plates are present in mitosis but absent in meiosis. Chromosoma 37: 177–192.

    PubMed  Article  CAS  Google Scholar 

  • González-García JM, Antonio C, Suja JA, Rufas JS (1996) Meiosis in holocentric chromosomes: kinetic activity is randomly restricted to the chromatid ends of sex univalents in Graphosoma italicum (Heteroptera). Chromosome Res 4: 124–132.

    PubMed  Article  Google Scholar 

  • Grozeva S, Nokkala S (2001) Chromosome numbers, sex determining systems, and patterns of the C-heterochromatin distribution in 13 species of lace bugs (Heteroptera, Tingidae). Folia Biol (Krakòw) 49: 29–41.

    CAS  Google Scholar 

  • Jacobs DH, Groeneveld H (2002) Cytogenetics and karyotype evolution of the genus Silvacoris Jacobs (Heteroptera: Aradidae: Carventinae) with the description of a statistical method to compare karyotypes. Cytologia 67: 159–168.

    Article  Google Scholar 

  • Jacobs DH, Liebenberg H (2001) Cytogenetics of Adamanotus uncotibialis Jacobs (Heteroptera: Aradidae). Caryologia 54: 83–96.

    Google Scholar 

  • Mandrioli M, Manicardi GC, Bizzaro D, Bianchi U (1999) NOR heteromorphism within a parthenogenetic lineage of the aphid Megoura viciae. Chromosome Res 7: 157–162.

    PubMed  Article  CAS  Google Scholar 

  • Manna GK (1984) Chromosomes in evolution in Heteroptera. In: Sharma AK, Sharma A, ed. Chromosomes in Evolution of Eukaryotic Groups. Boca Raton Florida USA: CRC Press, pp 189–225.

    Google Scholar 

  • Manzanero S, Puertas MJ (2003) Rye terminal neocentromeres: characterisation of the underlying DNA and chromatin structure. Chromosoma 111: 408–415.

    PubMed  CAS  Google Scholar 

  • Manzanero S, Puertas MJ, Jimeénez G, Vega JM (2000) Neocentric activity of rye 5RL chromosome in wheat. Chromosome Res 8: 543–554.

    PubMed  Article  CAS  Google Scholar 

  • Marchant AD (1988) Apparent introgression of mitochondrial DNA across a narrow hybrid zone in the Caledia captiva species complex. Heredity 60: 39–46.

    Google Scholar 

  • Mola LM, Papeschi AG (1993) Meiotic studies in Largus rucpennis (Castelnau) (Largidae, Heteroptera): frequency and behaviour of ring bivalents, univalents and B chromosomes. Heredity 71: 33–40.

    Google Scholar 

  • Motzko D, Ruthmann A (1984) Spindle membranes in mitosis and meiosis of the heteropteran insect Dysdercus intermedius. A study of the interrelationship of spindle architecture and the kinetic organization of chromosomes. Eur J Cell Biol 33: 205–216.

    PubMed  CAS  Google Scholar 

  • Nokkala S, Grozeva S (2000) Achiasmatic male meiosis in Myrmedobia coleoptrata (Fn) (Heteroptera,Microphysidae). Caryologia 53: 5–8.

    Google Scholar 

  • Papeschi AG, Mola LM (1990) Meiotic studies in Acanonicus hahni (Stål) (Coreidae, Heteroptera) I. Behaviour of univalents in desynaptic individuals. Genetica 80: 31–38.

    Article  Google Scholar 

  • Rebagliati P, Mola LM, Papeschi AG (2001) Karyotype and meiotic behaviour of the holokinetic chromosomes of six Argentine species of Pentatomidae (Heteroptera). Caryologia 54: 393–347.

    Google Scholar 

  • Rebagliati P, Papeschi AG, Mola LM (2003) Meiosis and fluorescent banding in Edessa meditabunda and Edessa rufomarginata (Edessinae, Pentatomidae, Heteroptera). Eur J Entomol 100: 11–18.

    Google Scholar 

  • Sanchez-Gea JF, Serrano J, Galian J (2000) Variability in rDNA loci in Iberian species of the genus Zabrus (Coleoptera: Carabidae) detected by fluorescence in-situ hybridization. Genome 43: 22–28.

    PubMed  Article  CAS  Google Scholar 

  • Suja JA, del Cerro AL, Page J, Rufas J, Santos JL (2000) Meiotic sister chromatid cohesion in holocentric sex chromosomes of three heteropteran species is maintained in the absence of axial elements. Chromosoma 109: 35–43.

    PubMed  Article  CAS  Google Scholar 

  • Ueshima N (1979) Hemiptera II: Heteroptera. Gebrüder Borntraeger, Berlin-Stuttgart: John, B.

    Google Scholar 

  • Vitturi R, Colomba MS, Barbieri R, Zunino M (1999) Ribosomal DNA location in the scarab beetle Thorectes intermedius (Costa) (Coleoptera: Geotrupidae) using banding and ?fluorescent in-situ hybridization. Chromosome Res 7: 255–260.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Papeschi, A.G., Mola, L.M., Bressa, M.J. et al. Behaviour of ring bivalents in holokinetic systems: Alternative sites of spindle attachment in Pachylis argentinus and Nezara viridula (Heteroptera). Chromosome Res 11, 725–733 (2003). https://doi.org/10.1023/B:CHRO.0000005740.56221.03

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CHRO.0000005740.56221.03

  • Heteroptera
  • holokinetic chromosomes
  • fluorescent in-situ hybridization
  • meiosis
  • ring bivalents
  • spindle attachment sites