Skip to main content
Log in

Spalling Phenomena in Shock‐Recovery Capsules during Shock Compression of Inert and Reactive Mixtures

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

Shock compression of Ti–C and Zn–S mixtures and the corresponding compounds in cylindrical shock‐recovery capsules was studied under identical experimental conditions. In reactive systems, the spall plates have larger dimensions than in inert mixtures, which is attributed to the effect of exothermic reactions of shock‐wave synthesis on the intensity of the bow wave. Energy estimates were obtained for the degree of chemical conversion in shock waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. S. Batsanov, G. S. Dorornin, S. V. Klochkov, and A. I. Teut, “Synthesis reactions behind shock fronts,” Combust. Expl. Shock Waves, 22, No. 6, 765–768 (1986).

    Google Scholar 

  2. S. S. Batsanov, M. F. Gogulya, M. A. Brazhnikov, et al., “Shock compression of reactants in the tin–chalcogen system,” Khim. Fiz., 10, 1699–1704 (1991).

    Google Scholar 

  3. S. S. Batsanov, M. F. Gogulya, M. A. Brazhnikov, et al., “Behavior of the reacting system Sn + S in shock-waves,” Combust. Expl. Shock Waves, 30, No. 3, 361– 365 (1994).

    Google Scholar 

  4. S. S. Batsanov, E. E. Andrianova, and E. V. Lazareva, “Mechanical consequences of chemical conversions in shock-recovery capsules,” Khim. Fiz., 8, 1435–1437 (1989).

    Google Scholar 

  5. S. S. Batsanov, G. S. Doronin, and V. P. Stupnikov, “Parameters of shock compression of material in cylindrical capsules,” Inzh. Fiz. Zh., 13, No. 4, 572–574 (1967).

    Google Scholar 

  6. S. S. Batsanov, V. M. Nigmatullina, and I. G. Yudele-vich, “Effect of explosions on materials. Protection of shock-compressed material against contamination by the material of the capsule,” Fiz. Goreniya Vzryva, 4, No. 3, 422–425 (1968).

    Google Scholar 

  7. A. Yu. Gordopolov, Yu. A. Gordopolov, V. M. Fedorov, and R. M. Shikhverdiev, “Shock-induced chemical conversions in a Ti–C mixture,” in: XII Symp. on Combustion and Explosion, Part II, Chernogolovka, September 11–15 (2000,) pp. 190–192.

  8. G. A. Adadurov, A. N. Dremin, and G. I. Kanel', “Parameters of Mach reflection in Plexiglas cylinders,” Zh Prikl. Mech. Tekh. Fiz., No. 2, 126–130 (1969).

  9. G. S. Doronin, V. P. Stupnikov, V. V. Roman'kov, et al., Compression of Plexiglas cylinders by a gliding det-onation wave," Zh. Tekh. Fiz., 43, No. 5, 1059–1065 (1973).

    Google Scholar 

  10. A. I. Martynov, E. V. Lazareva, and I. N. Temnit-skii, “Irregular interaction of shock-waves in cylindri-cal shock-recovery capsules,” in: Abstr. III All-Union Symp. on Pulsed Pressures (1979), p. 101.

  11. S. S. Batsanov, Effects of Explosions on Materials, Springer-Verlag, New York (1994).

    Google Scholar 

  12. V. A. Ryabinin, M. A. Ostroumov, and T. F. Swift, Thermodynamic Properties of Materials [in Russian], Leningrad (1977), p. 392.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S., Gavrilkin, S.M., Gordopolov, A.Y. et al. Spalling Phenomena in Shock‐Recovery Capsules during Shock Compression of Inert and Reactive Mixtures. Combustion, Explosion, and Shock Waves 40, 605–611 (2004). https://doi.org/10.1023/B:CESW.0000041414.23884.48

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000041414.23884.48

Navigation