Skip to main content
Log in

Microstructure of Heterogeneous Mixtures for Gasless Combustion

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The microstructure of a mixture for gasless combustion and its compactability were studied. The electrical conductivity, thermal conductivity, and burning rate of the mixture were measured, and metallographical studies were performed. It was found that particle shape and the ability of the particles to form a continuous skeleton play a determining role in the gasless combustion of the mixture. Accounting for this fact allows one to explain some experimental results that are inconsistent with the conventional theory of gasless combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. G. Merzhanov, Combustion Processes and Synthesis of Materials [in Russian], Izd. ISMAN, Chernogolovka (1998).

    Google Scholar 

  2. A. G. Merzhanov and B. I. Khaikin, Theory of Com-bustion Waves in Homogeneous Media [in Russian], Izd. ISMAN, Chernogolovka (1992).

    Google Scholar 

  3. A. S. Rogachev, “Microheterogeneous mechanism of gas-less combustion,” Combust. Expl. Shock Waves, 39, No. 2, 150–158 (2003).

    Google Scholar 

  4. A. P. Aldushin, T. M. Martem'yanova, A. G. Merzha-nov, et al., “Propagation of the front of an exothermic reaction in condensed mixtures with the interaction of components through a layer of high-melting product,” Combust. Expl. Shock Waves, 8, No. 2, 159–167 (1972).

    Google Scholar 

  5. E. A. Nekrasov, Yu. M. Maksimov, M. Kh. Ziatdinov, and A. S. Shteinebrg, “Effect of capillary spreading on combustion-wave propagation in gas-free systems,” Combust. Expl. Shock Waves, 14, No. 5, 575–580 (1978).

    Google Scholar 

  6. V. K. Smolyakov, “‘Roughness’ of the gasless combustion front,” Combust. Expl. Shock Waves, 37, No. 3, 274–284 (2001).

    Google Scholar 

  7. Yu. V. Frolov and A. N. Pivkina, “Fractal structure and features of energy-release (combustion) processes in het-erogeneous condensed systems,” Combust. Expl. Shock Waves, 33, No. 5, 513–527 (1997).

    Google Scholar 

  8. S. A. Rashkovskii, “Structure of heterogeneous con-densed mixtures,” Combust. Expl. Shock Waves, 35, No. 5, 523–531 (1999).

    Google Scholar 

  9. S. A. Rashkovskii, “Role of the structure of heteroge-neous condensed mixtures in the formation of agglomer-ates,” Combust. Expl. Shock Waves, 38, No. 4, 435–445 (2002).

    Google Scholar 

  10. G. N. Dul'nev and Yu. P. Zarichnyak, Thermal Conduc-tivity of Mixtures and Composite Materials: Handbook [in Russian], Énergiya, Leningrad (1974).

    Google Scholar 

  11. A. P. Hard and R. W. Holsinger, “Propagation of gasless reactions in solids. 2. Experimental study of exother-mic intermetallic reaction rates,” Combust. Flame, 21, No. 1, 77–89 (1973).

    Google Scholar 

  12. V. V. Aleksandrov, V. A. Gruszdev, and Yu. A. Ko-valenko, “Thermal conductivity of certain aluminum-based SHS systems,” Combust. Expl. Shock Waves, 21, No. 1, 93–98 (1985).

    Google Scholar 

  13. É. A. Butakova and A. G. Strunina, “Thermophysical properties of some thermite and intermetallic systems,” ibid., pp. 67–68.

  14. A. N. Emel'yanov, V. M. Shkiro, A. S. Rogachev, and V. I. Rubtsov, “Electric resistance and thermal con-ductivity of titanium based powder mixtures for self-propagating high-temperature synthesis,” Izv. Vyssh. Uchebn. Zaved., Tsvet. Metallurg., No. 2, 67–70 (2002).

  15. A. S. Rogachev, A. S. Mukas'yan, and A. G. Merzhanov, “Structure of transformation in gasless combustion of titanium–carbon and titanium–boron systems,” Dokl. Akad. Nauk SSSR, 297, No. 6, 1425–1428 (1987).

    Google Scholar 

  16. A. S. Rogachev, V. M. Shkiro, I. D. Chausskaya, and M. V. Shvetsov, “Gasless combustion in the system titanium–carbon–nickel,” Combust. Expl. Shock Waves, 24, No. 6, 720–725 (1988).

    Google Scholar 

  17. A. I. Kirdyashkin, O. K. Lepakova, Yu. M. Maksimov, A. T. Pak, “Structural transformations of powder mix-ture components in a gasless combustion wave,” Com-bust. Expl. Shock Waves, 25, No. 6, 718–723 (1989).

    Google Scholar 

  18. E. A. Levashov, A. S. Rogachev, V. I. Yukhvid, and I. P. Borovinskaya, Physicochemical and Technological Principles of Self-Propagating of High-Temperature Syn-thesis [in Russian], Binom, Moscow (1999).

    Google Scholar 

  19. R. W. Rice, “Review of microstructural aspects of fabri-cating bodies by self-propagating synthesis,” J. Mater. Sci., 26, 6533–6541 (1991).

    Google Scholar 

  20. A. P. Aldushin, B. I. Khaikin, and G. K. Shkadinskii, “Effect of the inhomogeneity of the internal structure of the medium on the combustion of condensed mixtures interacting through a layer of product,” Combust. Expl. Shock Waves, 12, No. 6, 7259–731 (1976).

    Google Scholar 

  21. A. É. Grigoryan and A. S. Rogachev, “Combustion of a titanium with nonmetal nitrides,” Combust. Expl. Shock Waves, 37, No. 2, 168–173 (2001).

    Google Scholar 

  22. A. S. Rogachev and A. G. Merzhanov “Theory of a relay-race mechanism of combustion-wave propagation in het-erogeneous media,” Dokl. Ross. Akad. Nauk, 365, No. 6, 788–791 (1999).

    Google Scholar 

  23. A. G. Merzhanov, P. M. Krishenik, and G. K. Shkadin-skii, “Model of transverse propagation of a solid ame in alternating layers of combustible and inert materials,” Dokl. Ross. Akad. Nauk, 380, No. 3, 323–327 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochetov, N.A., Rogachev, A.S., Emel'yanov, A.N. et al. Microstructure of Heterogeneous Mixtures for Gasless Combustion. Combustion, Explosion, and Shock Waves 40, 564–570 (2004). https://doi.org/10.1023/B:CESW.0000041408.95421.d2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000041408.95421.d2

Navigation