Skip to main content
Log in

Self‐Propagating High‐Temperature Synthesis of Quasicrystals

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

With an example of Al–Ni–Co systems of two different compositions, the possibility of obtaining stable decagonal quasicrystals by the method self‐propagating high‐temperature synthesis is demonstrated. The burning rate and temperature are determined. Results of an electron‐microscopic and x‐ray diffraction study of the quasicrystals are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett., 53, 1951–1953 (1984).

    Google Scholar 

  2. Physical Encyclopaedic Dictionary [in Russian], Sov. Éntsiklopediay, Moscow (1983).

  3. V. A. Polykhin and N. A. Vatolin, “Periodic fragments, and short-and long-range order in the structure of metal melts, glasses, and quasicrystals,” Rasplavy, 1, No. 5, 29–65 (1987).

    Google Scholar 

  4. D. Shechtman and C. I. Lang, “Quasiperiodic materials: discovery and recent developments,” MRS Bull., 22, No. 11, 40–42 (1997).

    Google Scholar 

  5. A. P. Tsai, “Metallurgy of quasicrystals: alloys and preparation,” MRS Bull., 22, No. 11, 43–47 (1997).

    Google Scholar 

  6. P. Archambault and C. Janot, “Thermal conductivity of quasicrystals and associated processes,” MRS Bull., 22, No. 11, 48–53 (1997).

    Google Scholar 

  7. C. J. Jenks and P. A. Thiel, “Surface properties of quasicrystals,” MRS Bull., 22, No. 11, 55–58 (1997).

    Google Scholar 

  8. M. F. Besser and T. Eisenhammer, “Deposition and applications of quasicrystalline coatings,” MRS Bull., 22, No. 11, 59–63 (1997).

    Google Scholar 

  9. K. Urban, M. Feuerbacher, and M. Wollgaren, “Mechanical behavior of quasicrystals,” MRS Bull., 22, No. 11, 65–68 (1997).

    Google Scholar 

  10. K. F. Kelton and P. C. Gibbons, “Hydrogen storage in quasicrystals,” MRS Bull., 22, No. 11, 69–72 (1997).

    Google Scholar 

  11. A. P. Tsai, A. Inoue, and T. Masumoto, “New decagonal Al-Ni-Fe and Al-Ni-Co alloys prepared by liquid quenching,” Mater. Trans. JIM, 30, 150–154 (1987).

    Google Scholar 

  12. A. P. Tsai, A. Inoue, and T. Masumoto, “A stable quasicrystal in Al-Cu-Fe system,” Jpn. J. Appl. Phys., 26, 1505–1507 (1987).

    Google Scholar 

  13. A. P. Tsai, A. Inoue, and T. Masumoto, “Stable decagonal Al-Co-Ni and Al-Co-Cu quasicrystals,” Mater. Trans. JIM, 30, 463–473 (1989).

    Google Scholar 

  14. A. P. Tsai, “Back to the Future”-an account discovery of stable quasicrystals,” Acc. Chem. Res., 36, 31–38 (2003).

    Google Scholar 

  15. H. T. Jeong, S. H. Kim, W. T. Kim, et al., “Growth of a decagonal A170Ni15Co15 single quasicrystal by the Czochralski method,” J. Crystal Growth, 217, 217–221 (2000).

    Google Scholar 

  16. K. Sugiyama, S. Nishimura, and K. Hiraga, “Structure of a W-(AlCoNi) crystalline phase related to Al-Co-Ni decagonal quasicrystals, studied by single crystal X-raydiffraction,” J. Alloys Compounds, 342, 65–71 (2002).

    Google Scholar 

  17. Y. C. Liu, X. F. Guo, and J. H. Yang, et al., “Decagonal quasicrystal growth in the undercooled Al72Ni12Co16 alloy,” J. Crystal Growth, 209, 963–969 (2000).

    Google Scholar 

  18. Y. C. Liu, G. C. Yang, D. S. Xu, et al., “Growth morphology of decagonal quasicrystal in laser resolidified Al72Ni12Co16,” J. Mater. Sci. Lett., 19, 1095–1097 (2000).

    Google Scholar 

  19. T. J. Sato, T. Hirano, and A. P. Tsai, “Single-crystal growth of the decagonal Al/Ni/Co quasicrystal,” J. Crystal Growth, 191, 545–552 (1998).

    Google Scholar 

  20. A. P. Tsai, T. J. Sato, J. Q. Guo, and T. Hirano, “Growing perfect quasicrystals,” J. Non-Cryst. Solids, 250-252, 833–838 (1999).

    Google Scholar 

  21. P. C. Canfiel and Ian R. Fisher, “High-temperature solution growth of intermetallic single crystals and quasicrystals,” J. Crystal Growth, 225, 155–161 (2001).

    Google Scholar 

  22. E. Ivanov, I. Konstanchuk, B. Bokhonov, and V. Boldyrev, “Mechanochemical synthesis of icosahedral phases in Mg-Al-Zn and Mg-Al-Cu alloys,” React. Solids, 7, 167–172 (1989).

    Google Scholar 

  23. E. Ivanov, B. Bokhonov, and I. Konstanchuk, “Synthethis and process characterization of mechanically alloyed icosahedral phase Mg-Al-Zn,” J. Mater. Sci., 26, 1409–1411 (1991).

    Google Scholar 

  24. B. Bokhonov, I. Konstanchuk, V. Boldyrev, and E. Ivanov, “Stage formation of quasicrystals during mechanical treatment of Frank-Kasper phase Mg32(Zn, Al)49,” J. Alloys Compounds, 187, 207–214 (1992).

    Google Scholar 

  25. B. Bokhonov, I. Konstanchuk, V. Boldyrev, and E. Ivanov, “HRTEM study of milling induced phase transition and quasicrystalline formation in Mg32(Zn, Al)49 cubic Frank-Kasper phase,” J. Non-Cryst. Solids, 153-154, 606–610 (1993).

    Google Scholar 

  26. B. B. Bokhonov, E. Y. Ivanov, B. P. Tolochko, and M. P. Sharafutdinov, “In situ study of structural transformations of Mg14Al15Zn41 quasicrystals under heating,” Mater. Sci.Eng., A278, 236–241 (2000).

    Google Scholar 

  27. A. Takasaki and K. F. Kelton, “High-pressure hydrogen loading in Ti45Zr38Ni17 amorphous and quasicrystal powders synthesized by mechanical alloying,” J. Alloys Compounds, 347, 295–300 (2002).

    Google Scholar 

  28. V. V. Tcherdyntsev, S. D. Kaloshkin, A. I. Salimon, et al., “Quasicrystalline phase formation by heating a mechanically alloyed Al65Cu23Fe12 powder mixture,” J. Non-Cryst. Solids, 312-314, 522–526 (2002).

    Google Scholar 

  29. A. I. Salimon, A. M. Korsunsky, E. V. Shelekhov, et al., “Crystallochemical aspects of solid state reactions in mechanically alloyed Al-Cu-Fe quasicrystalline powders,” Acta Mater., 49, 1821–1833 (2001).

    Google Scholar 

  30. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallides [in Russian], Izd. Tomsk.Gos. Univ., Tomsk (1989).

    Google Scholar 

  31. E. G. Avvakumov, A. R. Potkin, and O. I. Samarin, “Planetary mill,” USSR Inventor's Certificate No. 975068, Byul. Izobr., No. 43 (1982).

  32. N. P. Lyakishev (ed.), State Diagrams of Binary Metal Systems: Handbook [in Russian], Mashinostroenie, Moscow (1996-2000).

    Google Scholar 

  33. E. Abe and A. P. Tsai, “Structure of a metastable Al3Ni decagonal quasicrystal: comparison with a highly perfect Al72Ni20Co8,” J. Alloys Compounds, 342, 96–100 (2002).

    Google Scholar 

  34. K. Saitoh and M. Tanaka, “Stacking sequence of atomcluster in decagonal quasicrystals and their approximants,” J. Alloys Compounds, 342, 130–133 (2002).

    Google Scholar 

  35. M. A. Korchagin, T. F. Grigor'eva, B. B. Bokhonov, et al., “Solid-state combustion in mechanically activated SHS systems. I. Effect of activation time on process parameters and combustion product composition,” Combust. Expl. Shock Waves, 39, No. 1, 43–50 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korchagin, M.A., Bokhonov, B.B. Self‐Propagating High‐Temperature Synthesis of Quasicrystals. Combustion, Explosion, and Shock Waves 40, 438–444 (2004). https://doi.org/10.1023/B:CESW.0000033567.39538.23

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000033567.39538.23

Navigation