Skip to main content
Log in

Modeling of Pyrolysis of Ammonium Dinitramide Sublimation Products under Low‐Pressure Conditions

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

To clarify the kinetic mechanism proposed previously for the description of the chemical structure of ADN flame, the chemical processes in thermal decomposition products and ADN flame with a pressure of 10 torr and 3—40 atm were numerically simulated. Results of numerical simulation of pyrolysis of ADN sublimation products in a flow reactor in a temperature range of 373—920 K for a pressure of 10 torr are presented. Specific features of numerical simulation of NH3 reaction with HN(NO2)2 under conditions of high temperatures and low pressures and the reasons for significant differences in results calculated with the use of known one‐dimensional models are discussed. A technique is proposed, which allows adaptation of one‐dimensional numerical algorithms to fast processes and qualitative estimation of the contribution of the heating zone to chemical processes. Based on a comparison of numerical and experimental data, the contributions of individual stages and components to the pyrolysis process and the values of rate constants are estimated. A conclusion is made that the ADN sublimation process follows the dissociative mechanism: ADN c → NH3 + HN(NO2)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. B. Brill, P. J. Brush, and D. G. Patil, “Thermal decomposition of energetic materials 58. Chemistry of ammonium nitrate and ammonium dinitramide near the burning surface temperature,” Combust. Flame, 92, Nos. 1/2, 178–186 (1993).

    Google Scholar 

  2. B. L. Fetherolf and T. A. Litzinger, “Physical and chemical processes governing the CO2 laser-induced deflagration of ammonium dinitramide (ADN),” in: 29th JANNAF Combustion Subcommittee Meeting (Hampton, USA, Oct. 19-23, 1992), Vol. 2 (1992), pp. 327–338.

    Google Scholar 

  3. M. J. Rossi, J. C. Bottaro, and D. F. McMillen, “The thermal decomposition of the new energetic material ammonium dinitramide (NH4N(NO2)2) in relation to nitramide (NH2NO2) and NH4NO3,” Int. J. Chem. Kinet., 25, 549–570 (1993).

    Google Scholar 

  4. A. Snelson and A. J. Tulis, “Vaporisation of NH4N(NO2)2 and tentative identification of HN(NO2)2 by IR matrix isolation spectroscopy,” in: Nineteenth Int Pyrotechnics Seminar, Christchurch, New Zealand (1994), pp. 531–544.

  5. G. B. Manelis, “Thermal decomposition of dinitramide ammonium salz,” in: Pyrotechnics Basic Principles. Technology, Application, 26th Int. Annual Conference of ICT (1995), pp. 15.1–15.15.

  6. S. Lobbecke, H. Krause, and A. Pfeil, “Thermal behavior of ammonium dinitramide,”in: Energetic Materials-Technology, Manufacturing and Processing, 27th Int. Annual Conference of ICT (1996), pp. 143.1–143.4.

  7. S. Lobbecke, H. Krause, and A. Pfeil, “Thermal decomposition and stabilization of ammonium dinitramide (ADN),” in:Combustion and Detonation, 28th Int. Annual Conference of ICT, Karlsruhe (1997), pp. 112.1–112.8.

  8. O. Korobeinichev, A. Shmakov, and A. Paletsky, “Thermal decomposition of ammonium dinitramide and ammonium nitrate,” ibid., pp. 41.1–41.11.

  9. A. E. Fogelzang, V. P. Sinditskii, V. Y. Egorshev, et al., “Combustion behavior and flame structure of ammonium dinitramide,” ibid., pp. 99.1–99.14.

  10. O. P. Korobeinichev, L. V. Kuibida, A. A. Paletsky, and A. G. Shmakov, “Molecular-beam mass-spectrometry to ammonium dinitramide combustion chemistry studies,” J. Propuls. Power, 14, No. 6, 991–1000 (1998).

    Google Scholar 

  11. A. G. Shmakov, O. P. Korobeinichev, and T. A. Bol'shova, “Thermal decomposition of ammonium dinitramide vapor in a two-temperature flow reactor,” Combust. Expl. Shock Waves, 38, No. 3, 284–294 (2002).

    Google Scholar 

  12. J. Park, D. Chakraborty, and M. C. Lin, “Thermal decomposition of gaseous ammonium dinitramide at low pressure: kinetic modeling of product formation with ab initio MO/VRRKM calculations,” in: 27th Symp. (Int.) on Combustion, The Combustion Inst. (1998), pp. 2351–2357.

  13. A. M. Mebel, M. C. Lin, K. Morokuma, and C. F. Melius, “Theoretical study of the gas-phase structure, thermochemistry, and decomposition mechanisms of NH4NO2 and NH4N(NO2)2,” J. Phys. Chem., 99, No. 18, 6842–6848 (1995).

    Google Scholar 

  14. N. E. Ermolin, “Modeling of chemical processes in ammonium dinitramide flame,” in: Intrachamber Processes and Combustion in Solid-Propellant Facilities and Barrel Systems, Proc. 3rd Int. Conf. ICOC 99 (Izhevsk, Russia, July 7-9, 1999), Part 2, Izhevsk (2000), pp. 700–718.

  15. H. H. Michels and J. A. Montgomery, “On the structure and thermochemistry of hydrogen dinitramide,” J. Phys. Chem., 97, No. 25, 6602–6606 (1993).

    Google Scholar 

  16. P. Politzer and J. M. Seminario, “Computational study of the structure of dinitraminic acid, HN(NO2)2, and the energetics of some possible decomposition steps,” Chem. Phys. Lett., 216, Nos. 3-6, 348–352 (1993).

    Google Scholar 

  17. V. A. Shlyapochnikov, N. O. Cherskaya, O. A. Luk'yanov, et al., “Dinitramide and its salts. Communication 4. Molecular structure of dinitramide,” Izv. Ross. Akad. Nauk, Ser. Khim., No. 9, 1610–1613 (1994).

  18. J. Park and M. C. Lin, “Laser-initiated NO reduction by NH3: Total rate constant and product branching ratio measurements for the NH2 +NO reaction,” J. Phys. Chem. A, 101, No. 1, 5–13 (1997).

    Google Scholar 

  19. J. Park and M. C. Lin, “A mass spectrometric study of the NH2+NO2 reaction,” J. Phys. Chem. A, 101, No. 14, 2643–2647 (1997).

    Google Scholar 

  20. P. Glarborg, K. Dam-Johansen, and J. A. Miller, “The reaction of ammonia with nitrogen dioxide in a flow reactor: Implications for the NH(,2) + NO(,2) reaction,” Int. J. Chem. Kinet., 27, No. 12, 1207–1220 (1995).

    Google Scholar 

  21. D. Chakraborty, C. C. Hsu, and M. C. Lin, “Theoretical studies of nitroamino radical reactions. Rate constants for the unimolecular decomposition of HNNO2 and related bimolecular processes,” J. Chem. Phys., 109, No. 20, 8887–8896 (1998).

    Google Scholar 

  22. M. C. Lin, Y. He, and C. F. Melius, “Theoretical interpretation of the kinetics and mechanisms of the HNO + HNO and HNO + 2NO reaction with a unified model,” Int. J. Chem. Kinet., 24, No. 8, 489–516 (1992).

    Google Scholar 

  23. R. C. Sausa, W. R. Anderson, D. C. Dayton, et al., “Detailed structure study of a low pressure, stoichiometric H2/N2O/Ar flame,” Combust. Flame, 94, No. 4, 407–423 (1993).

    Google Scholar 

  24. J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen chemistry in combustion,” Prog. Energ. Combust. Sci., 15, 267–338 (1989).

    Google Scholar 

  25. D. L. Baulch, C. J. Cobos, R. A. Cox, et al., “Evaluated kinetic data for combustion modelling,” J. Phys. Chem. Ref. Data, 21, No. 3, 411–698 (1992).

    Google Scholar 

  26. D. F. Davidson, K. Kohse-Holughaus, A. Y. Chang, and R. K. Hanson, “A pyrolysis mechanism for ammonia,” Int. J. Chem. Kinet., 22, 513–535 (1990).

    Google Scholar 

  27. Wing Tsang and J. T. Herron, “Chemical kinetic data base for propellant combustion. I. Reaction involving NO, NO2, HNO, HNO2, HCN and N2O,” J. Phys. Chem. Ref. Data, 20, No. 4, 609–663 (1991).

    Google Scholar 

  28. W. Tsang and R. F. Hampson, “Chemical kinetic data base for combustion chemistry. Part 1. Methane and related compounds,” J. Phys. Chem. Ref. Data, 15, No. 3, 1087–1279 (1986).

    Google Scholar 

  29. N. E. Ermolin, O. P. Korobeinichev, and V. M. Fomin, “Kinetic mechanism of the reaction of NH2 with O2 in O-, H-, and N-containing flames. II. Estimation of kinetic parameters of the stages involving NH2O2, HNOOH, and NH2O,” Combust. Expl. Shock Waves, 30, No. 3, 298–305 (1994).

    Google Scholar 

  30. Shigeru Azuhata, Ryuichi Kaji, Hidetoshi Akimoto, et al., “A study of the kinetics of the NH3-NO-O2-H2O2 reaction,” in: 18th Symp. (Int.) on Combustion, The Combustion Inst. (1981), pp. 845–852.

  31. I. S. Zaslonko, A. M. Tereza, O. N. Kulish, and D. Yu. Zheldakov, “Kinetic aspects of reduction of the nitric oxide level in combustion products by means of adding ammonium (De-NOx),” Khim. Fiz., 11, No. 11, 1491–1517 (1992).

    Google Scholar 

  32. N. E. Ermolin and V. M. Fomin, “Numerical study of supersonic gasdynamics in a duct in the presence of nonequilibrium processes,” Combust. Expl. Shock Waves, 16, No. 3, 286–291 (1980).

    Google Scholar 

  33. J. D. Mertens, A. Y. Chang, R. K. Hanson, and C. T. Bowman, “A shock tube study of the reaction of NH with NO, O2 and O,” Int. J. Chem. Kinet., 23, No. 2, 173–196 (1991).

    Google Scholar 

  34. N. E. Ermolin, O. P. Korobeinichev, A. G. Tereshchenko, and V. M. Fomin, “Kinetic calculations and mechanism definition for reactions in an ammonium perchlorate flame,” Combust. Expl. Shock Waves, 18, No. 2, 180–188 (1982).

    Google Scholar 

  35. P. Glarborg, E. Johnsson Jan, and Dam-Johansen Kim, “Kinetics of homogeneous nitrous oxide decomposition,” Combust. Flame, 99, No. 3, 523–532 (1994).

    Google Scholar 

  36. L. R. Thorne and C. F. Melius, “The structure of hydrogen-cyanide-nitrogen dioxide premixed flames,” in: 26th JANNAF Combustion Meeting, October (1989), p. 10.

  37. N. E. Ermolin, O. P. Korobeinichev, L. V. Kuibida, and V. M. Fomin, “Study of the kinetics and mechanism of chemical reactions in hexogen flames,” Combust. Expl. Shock Waves, 22, No. 5, 544–552 (1986).

    Google Scholar 

  38. J. Park, Nevia D. Giles, Jesse Moore, and M. C. Lin, “A comprehensive kinetic study of thermal reduction of NO2 by H2,” J. Phys. Chem. A, 102, No. 49, 10099–10105 (1998).

    Google Scholar 

  39. A. Kimbal-Line Mark and R. K. Hanson, “Combustion-driven flow reactor studies of thermal DeNO reaction kinetics,” Combust. Flame, 64, No. 3, 337–351 (1986).

    Google Scholar 

  40. P. Glarborg, Kim Dam-Johansen, J. A. Miller, et al., “Modeling the thermal DENOx process in flow reactors surface effects and nitrous oxide formation,” Int. J. Chem. Kinet., 26, 421–436 (1994).

    Google Scholar 

  41. S. Salimian, R. K. Hanson, and C. H. Kruger, “Ammonia oxidation in shock-heated NH3-N2O-Ar mixtures,” Combust. Flame, 56, 83–95 (1984).

    Google Scholar 

  42. R. L. Hatch, “Chemical kinetics combustion model of the NG/binder system,” in: 23rd JANNAF Combust. Meeting, Vol. 1, CPIA Pub. 457 (1986), pp. 157–165.

  43. A. E. Al'yan, N. M. Bagsin, V. V. Penenko, et al., “Numerical simulation of photochemical methane oxidation in the atmosphere of industrial areas,” Preprint No. 772, Novosibirsk (1987).

  44. R. Atkinson, D. L. Baulch, R. A. Cox, et al., “Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement III,” Int. J. Chem. Kinet., 21, 115–150 (1989).

    Google Scholar 

  45. R. A. Fifer, “Kinetic of the reaction OH + HNO2 = H2O+NO2 at high temperatures behind shock waves,” J. Phys. Chem., 80, 2717 (1989).

  46. A. M. Mebel, M. C. Lin, and C. F. Melius, “Rate constant of the HONO + HONO → H2O + NO + NO2 reaction from ab initio MO and TST calculations,” J. Phys. Chem. A, 102, No. 10, 1803–1807 (1998).

    Google Scholar 

  47. J. Park and M. C. Lin, “A mass spectrometric study of the NH2 + NO2 reaction,” J. Phys. Chem. A, 101, No. 14, 2643–2647 (1997).

    Google Scholar 

  48. R. A. Cox, M. Fowles, D. Moulton, et al., “Kinetics of the reactions of NO3 radicals with Cl and ClO,” J. Phys. Chem., 91, 3361–3365 (1987).

    Google Scholar 

  49. Y. He, X. Liu, M. C. Lin, and C. F. Melius, “Thermal reaction of HNCO with NO2 at moderate temperatures,” Int. J. Chem. Kinet., 25, 845–863 (1993).

    Google Scholar 

  50. V. N. Kondrat'ev, Rate Constants of Gas-Phase Reactions [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  51. “EPA-600/2-76-003. Survey and evaluation of kinetic data on reactions in methane,” in: V. S. Engleman (ed.), Air Combustion, Washington, (1976).

  52. C. F. Melius and J. S. Binkley, “Thermochemistry of the decomposition of nitramines in the gas phase,” in: Twenty-First Symp. (Int.) on Combustion, The Combustion Inst. (1986), pp. 1953–1963.

  53. C. F. Melius, “Thermochemical modeling: I. Application to decomposition of energetic materials,” in: S. N. Bulusu (ed.), Chemistry and Physics of Energetic Materials, Kluwer Academic Publ., Dordrecht (1990), pp. 21–49.

    Google Scholar 

  54. Karsten Kjergward, P. Glarborg, Kim Dam-Johansen, and J. A. Miller, “Pressure effects on the thermal De-NOx process,” in: 26th Symp. (Int.) on Combustion, The Combustion Inst. (1996), pp. 2067–2074.

  55. N. E. Ermolin, O. P. Korobeinichev, A. G. Tereshchenko, and V. M. Fomin, “Modeling of kinetics and mechanism of chemical reactions in ammonium perchlorate flame,” Khim. Fiz., No. 12, 1711–1717 (1982).

  56. L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford-New York (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermolin, N.E. Modeling of Pyrolysis of Ammonium Dinitramide Sublimation Products under Low‐Pressure Conditions. Combustion, Explosion, and Shock Waves 40, 92–109 (2004). https://doi.org/10.1023/B:CESW.0000013672.66809.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000013672.66809.32

Navigation