Skip to main content
Log in

Electromagnetic Field Formed by Shock Compression of a Conducting Magnetic

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The structure of the electromagnetic field in a conducting magnetic compressed in a shock wave is analyzed. It is shown that compression of a magnetic material in an external magnetic field leads to origination of a system of two currents identical in magnitude but opposite in direction. One of them passes ahead of the shock front in the undisturbed substance, and the oppositely directed current passes over the shock‐compressed substance. As the shock wave moves further, the absolute value of current monotonically increases. The parameters determining the global electromagnetic pattern in the shock‐compressed magnetic are found. These parameters can be considered as the generalization of the governing parameters found previously by the authors for a nonmagnetic conductor. The formulated model offers a qualitative explanation for the results of dynamic experiments with an 80NKhS magnetic soft alloy. The voltage record on the specimen surface indicates effective shock‐induced demagnetization of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. B. Royce, “Anomalous shock-induced demagnetization of nickel ferrite,” Appl. Phys., 37, No. 11, 4066-4070 (1966).

    Google Scholar 

  2. J. E. Besancon, J. L. Champetier, Y. Leclanche, et al., “Ferromagnetic transducers,” in: H. Knoepfel and F. Herlach (eds.), Megagauss Magnetic Field Generation by Explosives and Related Experiments, Brussels (1966), pp. 331-347.

  3. R. A. Graham, “Pressure dependence of the magnetization on invar and selectron from 30–450 kbar,” Appl. Phys., 39, No. 2, 437-439 (1968).

    Google Scholar 

  4. J. W. Shaner and E. B. Royce, “Shock-induced demagnetization of YIG,” Appl. Phys., 39, No. 2, 492-495(1968).

    Google Scholar 

  5. R. C. Wayne, “Effect of hydrostatic and shock-wave compression on the magnetization of a 31.4 at.% NiFe alloy,” Appl. Phys., 40, No. 1, 15-22 (1969).

    Google Scholar 

  6. J. Y. Wong, “Double-shock method for detecting pressure limits of magnetic phase transitions,” Appl. Phys., 40, No. 4, 1789-1791 (1969).

    Google Scholar 

  7. R. N. Keeler and A. C. Mitchell, “Electrical conductivity, demagnetization and the high-pressure phase transition in shock-compressed iron,” Solid State Communication, 7, 271-274 (1969).

    Google Scholar 

  8. E. B. Royce, “Properties of magnetic materials under shock compression,” in: P. Caldirola and H. Knoepfel (eds.), Physics of High Energy Density, Academic Press, New York (1971).

    Google Scholar 

  9. D. E. Grady, “Method for shock-wave investigation of magnetic materials,” Rev. Sci. Instrum., 43, No. 5, 800-804 (1972).

    Google Scholar 

  10. V. V. Novikov and V. N. Mineev, “Shock compression and magnetic effects in a ferrous magnetodielectric,” Zh. Éksp. Teor. Fiz., 67, No. 4(10), 1141-1146 (1974).

    Google Scholar 

  11. A. N. Kiselev, “Magnetic measurements in shock waves,” Combust. Expl. Shock Waves, 11, No. 6, 804-809 (1975).

    Google Scholar 

  12. R. A. Graham, Solids under High-Pressure Shock Compression, Springer-Verlag, New York (1993), p. 221.

    Google Scholar 

  13. S. C. Gilev, “Shock-induced conductivity waves in metallic samples,” Combust. Expl. Shock Waves, 31, No. 4, 500-506(1995).

    Google Scholar 

  14. S. D. Gilev, “Shock-induced conductivity waves in a conductor placed in an external magnetic field,” Combust. Expl. Shock Waves, 32, No. 6, 696-701 (1996).

    Google Scholar 

  15. S. D. Gilev and T. Yu. Mikhailova, “Current wave in shock compression of a substance in a magnetic field,” Zh. Tekh. Fiz., 66, No. 5, 1-9 (1996).

    Google Scholar 

  16. S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic processes in a system of conductors formed by a shock wave,” Zh. Tekh. Fiz., 66, No. 10, 109-117(1996).

    Google Scholar 

  17. S. D. Gilev, “Current waves generated by shock compression of a condensed substance in a magnetic field,” Khim. Fiz., 17, No. 2, 38-51 (1998).

    Google Scholar 

  18. S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic field and current waves in a conductor compressed by a shock wave in a magnetic field,” Combust. Expl. Shock Waves, 36, No. 6, 816-825 (2000).

    Google Scholar 

  19. S. D. Gilev, “Application of the electromagnetic model for diagnosing shock-wave processes in metals,” Combust. Expl. Shock Waves, 37, No. 2, 230-235 (2001)

    Google Scholar 

  20. S. D. Gilev and T. Yu. Mikhailova, “Electromagnetic field under shock compression of a current-carrying conductor,” Zh. Tekh. Fiz., 72, No. 7, 21-27 (2002).

    Google Scholar 

  21. E. I. Bichenkov, “Electromagnetic field and current waves generated by a shock wave entering a conductor with a transverse magnetic field,” J. Appl. Mech. Tech. Phys., 38, No. 2, 185-191 (1997).

    Google Scholar 

  22. E. I. Bichenkov, “Electrodynamic effects accompanying the propagation of current-carrying shock waves in a transverse magnetic field,” Combust. Expl. Shock Waves, 36, No. 6, 809-815 (2000).

    Google Scholar 

  23. I. E. Tamm, Fundamentals of the Theory of Electricity [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  24. J. M. Burgers, “Penetration of a shock wave into a magnetic field,” in: R. K. M. Landshoff (ed.), Magnetohydrodynamics (Symposium), Stanford University Press, Stanford, California(1957), pp. 36-56.

    Google Scholar 

  25. E. I. Zababakhin and M. N. Nechaev, “Shock waves of the field and their cumulation,” Zh. Éksp. Teor. Fiz., 33, No. 2 (8), 442-450 (1957).

    Google Scholar 

  26. S. I. Pai, Magnetogasdynamics and Plasma Physics, Springer-Verlag, Wien (1962).

    Google Scholar 

  27. A. G. Kulikovskii and G. A. Lyubimov, Magnetic Hydrodynamics [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  28. H. Knoepfel, Pulsed High Magnetic Fields, North-Holland Publ. Co., Amsterdam (1970).

    Google Scholar 

  29. Yu. V. Koritskii, V. V. Pasynkov, and B. M. Tareev (eds.), Handbook on Electrotechnical Materials [in Russian], Energoatomizdat, Leningrad (1988).

    Google Scholar 

  30. R. N. Keeler, “Electrical conductivity of condensed media at high pressures,” P. Caldirola and H. Knoepfel (eds.), Physics of High Energy Density, Academic Press, New York (1971), pp. 106-125.

    Google Scholar 

  31. J. J. Dick and D. L. Styris, “Electrical resistivity of silver foils under unaxial shock-wave compression,” J. Appl. Phys., 46, No. 4, 1602-1617 (1975).

    Google Scholar 

  32. F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, R. P. Chelyshev, and B. I. Shekhter, Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilev, S.D., Mikhailova, T.Y. Electromagnetic Field Formed by Shock Compression of a Conducting Magnetic. Combustion, Explosion, and Shock Waves 39, 704–714 (2003). https://doi.org/10.1023/B:CESW.0000007685.61749.a9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000007685.61749.a9

Navigation