Skip to main content
Log in

Analysis of Nitrogen‐Oxide Formation Mechanisms in Filtration Combustion of Methane–Air Mixtures

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The kinetics of nitrogen‐oxide formation under conditions of filtration combustion of lean and rich methane–air mixtures is analyzed. Intense interphase heat exchange in the wave of filtration combustion of gases leads to a drastic decrease in the gas residence time in the high‐temperature region and also to a decrease in the maximum temperatures in the reaction zone. As a result, the processes of filtration combustion of gases are characterized by reduced emission index of nitrogen oxides as compared to diffusion flames. Under these conditions, the thermal mechanism does not make any significant contribution to NO formation, and the dominating channels are the NNH channels for lean mixtures and the Fenimore mechanism for rich mixtures. Nitrogen oxides in lean mixtures are mainly represented by NO and N2O, whereas nitrogen‐containing components HCN and NH3 are typical of rich mixtures. NO decomposition in rich mixtures occurs in “afterburning” reactions with participation of HCCO, CH3, and CH2 radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. J. Finlayson-Pitts and J. N. Pitts, Atmosphere Chemistry: Fundamentals and Experimental Techniques, Wiley and Sons, New York (1986).

    Google Scholar 

  2. J. R. Howell, M. J. Hall, and J. L. Ellzey “Combustion of hydrocarbon fuels within porous inert media” Prog. Ener. Combust. Sci., 22, 121-145 (1996).

    Google Scholar 

  3. J. G. Hoffman, R. Echigo, H. Yoshida, and S. Tada “Experimental study on combustion in a porous media with a reciprocating flow system” Combust. Flame, 111, 32-46 (1997).

    Google Scholar 

  4. M. J. Khinkis, W. Kunc, and T.-Y. Xiong “Experimental evaluation of a high-efficiency surface combustorheater concept with low pollutant emissions” Proc. Symp. (Int.) on Combustion in Industrial Furnaces and Boilers, New Jersey (1989).

  5. R. M. Kendall, S. T. Desjardin, and J. D. Sallivan “Basic research on radiant burners” Annual Report, No. GRI-90/0325 (January 1989–March 1990), Gas Research Inst. Chicago (1990).

    Google Scholar 

  6. P. F. Hsu and R. D. Matthews “The necessity of using detailed kinetics in models for premixed combustion within porous media” Combust. Flame, 93, 457-466 (1993).

    Google Scholar 

  7. R. Khanna, R. Goel, and J. L. Ellzey “Measurements of emissions and radiation for methane combustion within a porous medium burner” Combust. Sci. Technol., 99, 133-142 (1994)

    Google Scholar 

  8. J. O. Chae, M. S. Shim, and J. W. Hwang “An experimental study on the characteristics of superadiabatic reciprocating type combustor in porous media” in: Proc. 1st Int. School-Seminar: Modern Problems of Combustion and Its Applications, Minsk (1995), pp. 28-34.

  9. J. P. Binque, A. V. Saveliev, A. A. Fridman, and L. A. Kennedy, “NOx and CO emissions of methane/air combustion waves in an inert packed bed” in: Proc. Mediterranean Symp. on Combustion (Abstr. of Workin-Progress Session), Antalya (1999), p. 15.

  10. L. A. Kennedy, J. P. Binque, M. K. Drayton, et al. “Chemical structures of filtration combustion waves in a porous media” in: Proc. The 27th Symp. (Int.) on Combustion (WIP Abstracts), Pittsburgh (1998), p. 403.

  11. L. A. Kennedy, J. P. Binque, A. V. Saveliev, et al. “Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel-rich conditions” in: Proc. The 28th Symp. (Int.) on Combustion (Abstr. of Contributed Papers), Pittsburgh (2000), p. 208.

  12. R. J. Kee, F. M. Rupley, and J. A. Miller “CHEMKINII: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics” Sandia Report No. SAND89-8009 (1989).

  13. M. J. Pilling, T. Turanyi, and K. J. Hughes, “The leeds methane oxidation mechanism” http: //www.chem.leeds.ac.uk/Combustion/Combustion.html (1997).

  14. A. M. Dean and J. W. Bozelli, “A review of NOx formation” W. Gardiner, Jr. (ed.), Combustion Chemistry II, Springer-Verlag, New York (1999).

    Google Scholar 

  15. G. P. Smith, D. M. Golden, M. Frenklach, et al. “GRIMech 3.0” http://www.me.berkeley.edu/gri?mech/.

  16. J. M. Bozelli and A. M. Dean, “Direct studies of some elementary steps for the formation and destruction of nitric oxide in the H–N–O system” Int. J. Chem. Kinet., 27, 1097-1109 (1995).

    Google Scholar 

  17. Yu. M. Laevskii and V. S. Babkin, “Filtration combustion of gases” Propagation of Heat Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988), pp. 118-120.

    Google Scholar 

  18. S. I. Futko, “Effect of kinetic properties of a mixture on filtration combustion of gases” Combust. Expl. Shock Waves, 39, No. 1, 11-22 (2003).

    Google Scholar 

  19. S. I. Futko, “Kinetic analysis of the chemical structure of waves of filtration combustion of gases in fuel-rich compositions” Combust. Expl. Shock Waves, 39, No. 4, 437-447 (2003).

    Google Scholar 

  20. L. B. Younis and R. Viskanta, “Experimental determination of the volumetric heat transfer coefficient between stream of the air and ceramic foam” Int. J. Heat Mass Transfer, 36, No. 6, 1425-1434 (1993).

    Google Scholar 

  21. H. Eberius, T. Just, S. Kelm, and U. Nowak, “Konversion von brennstoffgebundenem Stickstoff am Beispiel von dotierten Propan-Luft-Flamemmen” VDI-Berichte, 645, 626 (1987).

    Google Scholar 

  22. S. I. Futko, “Kinetic analysis of the chemical structure of filtration-combustion waves in fuel-lean mixtures” Combust. Expl. Shock Waves, 39, No. 3, 261-269 (2003).

    Google Scholar 

  23. C. T. Bowman, “Control of combustion-generated nitrogen oxide emissions: Technology driven by regulation” in: Proc. 24th Symp. (Int.) on Combustion, Pittsburgh (1993), p. 859.

  24. M. Nishioka, S. Nakagava, Y. Ishikawa, and T. Takeno, “Prediction of NOx emission index of laminar diffusion flame” Combust. Flame, 98, 127 (1994).

    Google Scholar 

  25. K. C. Smyth, “Experimental investigation and modeling of NO formation in diffusion flames” Combust. Sci. Technol., 115, 151 (1996).

    Google Scholar 

  26. M. T. Marro, M. A. Pivovarov, and J. H. Miller, “Strategy for the simplification of nitric oxide chemistry in a laminar methane/air diffusion flamelet” Combust. Flame, 111, 208-221 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futko, S.I. Analysis of Nitrogen‐Oxide Formation Mechanisms in Filtration Combustion of Methane–Air Mixtures. Combustion, Explosion, and Shock Waves 39, 627–634 (2003). https://doi.org/10.1023/B:CESW.0000007674.81766.e9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000007674.81766.e9

Navigation