Skip to main content
Log in

Preexplosion Phenomena in Prompt Initiation of Secondary Explosives (Review)

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

This paper reviews experimental studies of preexplosion phenomena during shock‐wave and laser initiation of secondary high explosives (HEs). The main research results are discussed from the viewpoint of similarity and difference between the processes occurring in these methods of initiation. Approaches to developing research into the phenomena in question are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. K. Andreev and Yu. B. Khariton, “Some considerations on the mechanism of self-propagating reactions,” Dokl. Akad. Nauk SSSR, 1, 402-404 (1934).

    Google Scholar 

  2. A. F. Belayev, “Initiation of detonation of explosives under the action of a thermal pulse,” Dokl. Akad. Nauk SSSR, 18, 267-270 (1938).

    Google Scholar 

  3. F. P. Bowden and A. D. Yoffe, Fast Reactions in Solids, Butterworth, London (1958).

    Google Scholar 

  4. J. T. Dickinson, L. C. Jensen, D. L. Doering, and R. Yee, “Mass spectroscopy study of products from exposure of cyclotrimethylenetrinitramine single crystals to KrF excimer laser radiation,” J. Appl. Phys., 67, No. 8, 3641-3651 (1990).

    Google Scholar 

  5. A. D. Zinchenko, V. I. Sdobnov, V. I. Tarzhanov, et al., “Laser effect on a porous HE without its initiation,” Fiz. Goreniya Vzryva, 27, No. 2, 97-101 (1991).

    Google Scholar 

  6. S. M. Ryabykh and V. S. Dolganov, “Criteria of excitation of explosive decomposition of silver azide by pulsed radiation,” Combust. Expl. Shock Waves, 28, No. 4, 399-402 (1992).

    Google Scholar 

  7. E. I. Aleksandrov, O. B. Sidonskii, and V. P. Tsipilev, “Effect of burnout in the neighborhood of absorbing inclusions on the process of laser ignition of a condensed medium,” Fiz. Goreniya Vzryva, 27, 3, 7-12 (1991).

    Google Scholar 

  8. B. P. Aduev, É. D. Aluker, G. M. Belokurov, and A. G. Krechetov, “Preexplosion conductivity of silver azide,” Pis'ma Zh. Éksp. Teor. Fiz., 62, No. 3, 203-204 (1995).

    Google Scholar 

  9. B. P. Aduev, É. D. Aluker, and A. G. Krechetov, “Preexplosion luminescence of silver azide,” Pis'ma Zh. Teor. Fiz., 22, No 16, 24-27 (1996).

    Google Scholar 

  10. B. P. Aduev, É. D. Aluker, G. M. Belokurov, et al., “Explosive decomposition of heavy metal azides,” Pis'ma Zh. Éksp. Teor. Fiz., 116, No. 5 (11), 1676-1693 (1999).

    Google Scholar 

  11. Yu. A. Zakharov, É. D. Aluker, B. P. Aduev, et al., Preexplosion Phenomena in Heavy Metal Azides [in Russian], Khimmash, Moscow (2002).

    Google Scholar 

  12. M. M. Kuklja, B. P. Aduev, É. D. Aluker, et al., “Electronic excitation role by explosive destruction of solid bodies,” J. Appl. Phys., 89, No. 7, 4156-4166 (2001).

    Google Scholar 

  13. K. P. Stanyukovich (ed.), Physics of Explosion [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  14. V. I. Tarzhanov (ed.), Prompt Initiation of High Explosive. Special Modes of Detonation (collected scientific papers) [in Russian], Izd. RFNC-VNIITF, Snezhinsk (1998).

    Google Scholar 

  15. G. T. Afanas'ev and V. K. Bobolev, Shock Initiation of Solid Explosives [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  16. V. V. Selivanov, V. S. Solov'ev, and N. N. Sysoev, Shock and Detonation Waves, Methods of Investigation [in Russian], Izd. Mosk. Univ., Moscow (1990).

    Google Scholar 

  17. F. P. Bowden and K. Singh, “Irradiation of explosives with high-speed particles and the influence of crystal size on explosion,” Proc. Roy. Soc. Ser. A., 227, 22 (1954).

    Google Scholar 

  18. J. J. Dick, R. N. Mulford, W. J. Spencer, et al., “Shock response of pentaerythritol tetranitrate single crystals,” J. Appl. Phys., 70, 3572-3587 (1991).

    Google Scholar 

  19. A. M. Karo, J. R. Hardy, and F. E. Walker, “Theoretical studies of shock-initiated detonations,” Acta Astronaut., No. 5, 1041 (1978).

    Google Scholar 

  20. F. Williams, “Electronic states of solid explosives and their probable role in detonations,” Adv. Chem. Phys., 21, 289 (1971).

    Google Scholar 

  21. A. N. Dremin, “Theory of detonation,” Khim. Fiz., 14, No. 12, 22-40 (1995).

    Google Scholar 

  22. J. J. Gilman, “Mechanochemistry,” Science, 274, 65 (1996).

  23. M. M. Kuklja, E. V. Stefanovich, and A. B. Kunz, “An exitonic mechanism of detonation initiation in explosives,” J. Chem. Phys., 112, No. 7, 3417-3423 (2000).

    Google Scholar 

  24. F. E. Walker, “Physical kinetics,” J. Appl. Phys., 63, 5548-5554 (1988).

    Google Scholar 

  25. F. E. Walker, “Comparison of the classical and modern theories of detonation,” Khim. Fiz., 14, No. 12, 47-67 (1995).

    Google Scholar 

  26. F. E. Walker, “Support growing for a new kinetics of shock-induced processes,” in: Proc. 16th Symp. on Explosives and Pyrotechnics, Interaction Danville, Calif., April 29-May 1 (1997)

    Google Scholar 

  27. B. M. Rice, W. Mattson, J. Grosh, and S. F. Trevino, “Molecular-dynamics study of detonation. A comparison with hydrodynamic predictions,” Phys. Rev. E., 53, No. 1, 611-622 (1996).

    Google Scholar 

  28. A. V. Pozdnyakov, “Calculation of detonation velocity,” Combust. Expl. Shock Waves, 38, No. 3, 337-345 (2002).

    Google Scholar 

  29. J. Roth, “Initiation of lead azide by high-intensity light,” J. Chem. Phys., 41, No. 7, 1929-1936 (1964).

    Google Scholar 

  30. A. A. Brish, I. A. Galeev, and B. N. Zaitsev, et. al., “Shock initiation of condensed explosives by radiation from an optical quantum generator,” Combust. Expl. Shock Waves, 3, 132-133 (1966).

    Google Scholar 

  31. I. A. Galeev and B. N. Zaitsev, “On the reflectivity of HEs,” Combust. Expl. Shock Waves, 5, No. 3, 447 (1969).

    Google Scholar 

  32. A. A. Brish, I. A. Galeev, B. N. Zaitsev, et al., “On the mechanism of initiation of condensed explosives by radiation from an optical quantum generator,” Combust. Expl. Shock Waves, 5, No. 4, 475-480 (1969).

    Google Scholar 

  33. L. C. Yang and V. J. Menichelli, “Detonation of insensitive high explosives by Q-switched ruby laser,” Appl. Phys. Lett., 19, No. 11, 473 (1971).

    Google Scholar 

  34. L. C. Yang, V. J. Menichelli, and J. E. Earnest, “Laser initiation of explosive devices,” National Defense Magazine, 58, No. 322, 344 (1974).

    Google Scholar 

  35. L. C. Yang and V. J. Menichelli, “Laser initiation of insensitive high explosives,” in: D. J. Edwareds (ed.), Proc. 6 Int. Symp. on Detonation, Office of Naval Research, Arlington, VA (1976), pp. 612-621.

    Google Scholar 

  36. S. Epstein, “Laser detonator,” USA Patent, No. 3,362,329, Filed December 10, 1963.

  37. D. J. Lewis, De Rey Marina, and F. H. Gardner, Explosive detonating device, USA Patent No. 3,528,372. Filed Sept. 8, 1967.

  38. E. I Aleksandrov and A. G. Voznyuk, “Initiation of lead azide with laser radiation,” Combust. Expl. Shock Waves, 14, No. 4, 480-483 (1978).

    Google Scholar 

  39. R. J. Harrach, “Estimates on the ignition of high explosives by laser pulses,” J. Appl. Phys., 47, 2473-2482 (1976).

    Google Scholar 

  40. N. K. Bourn, “On the laser ignition and initiation of explosives,” Proc. Roy. Soc. Lond. A., 457, 1-26 (2001).

    Google Scholar 

  41. A. A. Volkova, A. D. Zinchenko, I. V. Sanin, et al., “Time characteristics laser initiation of PETN,” Combust. Expl. Shock Waves, 13, No. 5, 645-651 (1977).

    Google Scholar 

  42. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., “Laser initiation of PETN,” Combust. Expl. Shock Waves, 32, No. 4, 454-459 (1996).

    Google Scholar 

  43. V. B. Ioffe, A. V. Dolgolaptev, V. E. Aleksandrov, and A. P. Obraztsov, “Laser pulse ignition of condensed systems containing aluminum,” Combust. Expl. Shock Waves, 21, No. 3, 316-319 (1985).

    Google Scholar 

  44. V. I. Tarzhanov, A. D. Zinchenko, B. N. Smirnov, et al., “PETN Initiation by a light-induced explosion of a metal film,” Combust. Expl. Shock Waves, 32, No. 2, 214-218 (1996).

    Google Scholar 

  45. D. L. Paisley, “Laser-driven miniature flyer plates for shock initiation of secondary explosives,” in: S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker (eds.), Shock Compression in Condensed Material, Elsevier (1991), pp. 825-828.

  46. K. S. Shifrin, Light Scattering in a Turbid Medium [in Russian], Gostekhizdat (1951).

  47. F. Pristera, M. Halik, A. Halik, and W. Fredericks, “Analysis of explosives using infrared spectroscopy,” Anal. Chem., 32, No. 4, 495-508 (1960).

    Google Scholar 

  48. Energetic Condensed Materials, Yanus-K, Moscow (1999).

  49. L. Bellamy, The Infra-Red Spectra of Complex Molecules, London (1954).

  50. Data of Deba in [3].

  51. D. L. Paisley, “Prompt detonation of secondary explosives by laser,” in: Proc. 9 Int. Symp. on Detonation, Office of the Chief of Naval Research, Arlington, VA (1989), pp. 492-499.

    Google Scholar 

  52. Chemical Encyclopedia [in Russian], Vol. 3. Bolsh. Ross. Éntsikl. Moscow, (1992), pp. 305-306.

  53. N. E. Ermolin and V. E. Zarko, “Mechanism and kinetics of the thermal decomposition of cyclic nitramines (review),” Combust. Expl. Shock Waves, 33, No. 3, 251-269 (1997).

    Google Scholar 

  54. V. E. Aleksandrov, A. V. Dolgolaptev, V. B. Ioffe, and B. V. Levin, “Inflammation of porous systems by monopulse laser radiation,” Combust. Expl. Shock Waves, 21, No. 1, 54-56 (1985).

    Google Scholar 

  55. A. D. Zinchenko, A. I. Pogrebov, V. I. Tarzhanov, and B. B. Tokarev, “Optical characteristics of some powdered high explosives,” Combust. Expl. Shock Waves, 28, No. 5, 524-529 (1992).

    Google Scholar 

  56. A. P. Ivanov, Optics of Scattering Media [in Russian], Nauka. Tekh., Minsk (1969).

    Google Scholar 

  57. V. N. Rodionov, V. V. Adushkin, V. N. Kostyuchenko, et al., Mechanical Effect of an Underground Explosion [in Russian], Nedra, Moscow (1971).

    Google Scholar 

  58. M. F. Foltz, “Pressure dependences of the burn rate of PETN at high pressure,” in: Proc. of Symp. on Energetic Materials, Plesanton, USA (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarzhanov, V.I. Preexplosion Phenomena in Prompt Initiation of Secondary Explosives (Review). Combustion, Explosion, and Shock Waves 39, 611–618 (2003). https://doi.org/10.1023/B:CESW.0000007672.14184.08

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CESW.0000007672.14184.08

Navigation