Skip to main content
Log in

On the Molecular Basis of the Receptor Mosaic Hypothesis of the Engram

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. This paper revisits the so-called “receptor mosaic hypothesis” for memory trace formation in the light of recent findings in “functional (or interaction) proteomics.” The receptor mosaic hypothesis maintains that receptors may form molecular aggregates at the plasma membrane level representing part of the computational molecular networks.

2. Specific interactions between receptors occur as a consequence of the pattern of transmitter release from the source neurons, which release the chemical code impinging on the receptor mosaics of the target neuron. Thus, the decoding of the chemical message depends on the receptors forming the receptor mosaics and on the type of interactions among receptors and other proteins in the molecular network with novel long-term mosaics formed by their stabilization via adapter proteins formed in target neurons through the incoming neurotransmitter code. The internalized receptor heteromeric complexes or parts of them may act as transcription factors for the formation of such adapter proteins.

3. Receptor mosaics are formed both at the pre- and postsynaptic level of the plasma membranes and this phenomenon can play a role in the Hebbian behavior of some synaptic contacts. The appropriate “matching” of the pre- with the postsynaptic receptor mosaic can be thought of as the “clamping of the synapse to the external teaching signal.” According to our hypothesis the behavior of the molecular networks at plasma membrane level to which the receptor mosaics belong can be set in a “frozen” conformation (i.e. in a frozen functional state) and this may represent a mechanism to maintain constant the input to a neuron.

4. Thus, we are suggesting that molecular networks at plasma membrane level may display multiple “attractors” each of which stores the memory of a specific neurotransmitter code due to a unique firing pattern. Hence, this mechanism may play a role in learning processes where the input to a neuron is likely to remain constant for a while.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Agnati, L. F., Benfenati, F., Ferri, M., Morpurgo, A., Apolloni, B., and Fuxe, K. (2002). Molecular basis of learning and memory: Modeling based on receptor mosaics. In Apolloni, B., and Kurfess, F. (eds.), From Synapses to Rules: Discovering Symbolic Rules from Neural Processed Data, Kluwer Academic/Plenum Press, New York, pp. 165–195.

    Google Scholar 

  • Agnati, L. F., Celani, M. F., and Fuxe, K. (1983a). Cholecystokinin peptides in vitro modulate the characteristics of striatal [3H] N-propylnorapomorphine binding sites. Acta Physiol. Scand. 118:79–81.

    Google Scholar 

  • Agnati, L. F., Ferré, S., Cortelli, P., and Fuxe, K. (1995). A brief appraisal on some aspects of the receptor–receptor interaction. Neurochem. Int. 27:139–146.

    Google Scholar 

  • Agnati, L. F., Ferré, S., Lluis, C., Franco, R., and Fuxe, K. (2003b). Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev.

  • Agnati, L. F., Franzén, O., Ferré, S., Franco, R., and Fuxe, K. (2003a). Possible role of intramembrane receptor–receptor interactions in memory and learning via formation of long-lived heteromeric complexes: Focus on motor learning in basal ganglia. J. Neural Transm.

  • Agnati, L. F., Fuxe, K., Benfenati, F., Mutt, V., and Hökfelt, T. (1983b). Differential modulation by CCK-8 and CCK-4 of [3H]spiperone binding sites linked to dopamine and 5-HT receptors in the brain of the rat. Neurosci. Lett. 35:179–183.

    Google Scholar 

  • Agnati, L. F., Fuxe, K., Zini, I., Lenzi, P., and Hökfelt, T. (1980). Aspects on receptor regulation and isoreceptor identification. Med. Biol. 58:182–187.

    Google Scholar 

  • Agnati, L. F., Fuxe, K., Zoli, M., Rondanini, C., and ögren, S. O. (1982). New vistas on synaptic pasticity: Mosaic hypothesis on the engram. Med. Biol. 60:183–190.

    Google Scholar 

  • Agnati, L. F., Zoli, M., Merlo Pich, E., Benfenati, F., and Fuxe, K. (1990). Aspects of neural plasticity in the central nervous system. VII. Theoretical aspects of brain communication and computation. Neurochem. Int. 16:479–500.

    Google Scholar 

  • Aleksander I. (1997). Impossible Minds, Imperial College Press, London, UK.

    Google Scholar 

  • Banks, R. E., Dunn, M. J., Hochstrasser, D. F., Sanchez, J. C., Blackstock, W., Pappin, D. J., and Selby, P. J. (2000). Proteomics: New perspectives, new biomedical opportunities. Lancet 356:1749–1756.

    Google Scholar 

  • Bouvier, M. (2001). Oligomerization of G-protein-coupled transmitter receptors. Nat. Neurosci. 2:274–286.

    Google Scholar 

  • Casadó, V., Cantí, C., Mallol, J., Canela, E. I., Lluis, C., and Franco, R. (1990). Solubilization of A1 adenosine receptor from pig brain. Characterization and evidence of the role of the cell membrane on the coexistence of the high and low-affinity states. J. Neurosci. Res. 26:461–473.

    Google Scholar 

  • Chao, M. V., and Bothwell, M. (2002). Neurotrophins: To cleave or not to cleave. Neuron 33:9–12.

    Google Scholar 

  • Ciruela, F., Saura, C., Canela, E. I., Mallol, J., Lluis, C., and Franco, R. (1996). Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett. 380:219–223.

    Google Scholar 

  • Ferré, S., Torvinen, M., Antoniou, K., Irenius, E., Civelli, O., Arenas, E., Fredholm, B. B., and Fuxe, K. (1998). Adenosine A1 receptor-mediated modulation of dopamine D1 receptors in stably cotransfected fibroblast cells. J. Biol. Chem. 273:4718–4724.

    Google Scholar 

  • Franco, R., Casadó, V., Ciruela, F., Mallol, J., Lluís, C., and Canela, E. I. (1996) The cluster-arranged cooperative model: A model that accounts for the kinetics of binding to A1 adenosine receptors. Biochemistry 35:3007–3015.

    Google Scholar 

  • Franco, R., Valenzuela, A., Lluís, C., and Blanco, R. (1998). Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol. Rev. 161:27–42.

    Google Scholar 

  • Frauenfelder, H., Sligar, S. G., and Wolynes, P. G. (1991). The energy landscapes and motions of proteins. Science 254:1598–1603.

    Google Scholar 

  • Fuxe, K., and Agnati, L. F. (1985). Receptor–receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med. Res. Rev. 5:441–482.

    Google Scholar 

  • Fuxe, K., and Agnati, L. F. (1987). Receptor–Receptor Interactions. A New Intramembrane Integrative Mechanism, Macmillan Press, London, UK.

    Google Scholar 

  • Fuxe, K., Agnati, L. F., Benfenati, F., Celani, M. F., Zini, I., Zoli, M., and Mutt, V. (1983). Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. Neural Transm. 18:165–179.

    Google Scholar 

  • Ginés, S., Hillion, J., Torvinen, M., LeCrom, S., Casado, V., Canela, E., Rondin, S., Lew, J., Watson, S., Zoli, M., Agnati, L. F., Vernier, P., Lluis, C., Ferré, S., Fuxe, K., and Franco, R. (2000). Dopamine D1 and adenosine A1 receptors assemble into functionally interacting heteromeric complexes. Proc. Natl. Acad. Sci. U.S.A. 97:8606–8611.

    Google Scholar 

  • Gouldson, P. R, Higgs, C., Smith, R. E., Dean, M. K., Gkoutos, G. V., and Reynolds, C.A. (2000). Dimerization and domain swapping in G-protein-coupled receptors: A computational study. Neuropsychopharmacology 23:60–77.

    Google Scholar 

  • Gouldson, P. R., Snell, C. R., Bywater, R. P., Higgs, C., and Reynolds, C. A. (1998). Domain swapping in G-protein coupled receptor dimers. Protein Eng. 11:1181–1193.

    Google Scholar 

  • Grant, S., and Blackstock, W. (2001). Proteomics in neuroscience: From protein to network. J. Neurosci. 21:8315–8318.

    Google Scholar 

  • Grant, S. G. N., and Husi, H. (2001). Proteomics of multiprotein complexes: Answering fundamental questions in neuroscience. Trends Biotech. 19:49–54.

    Google Scholar 

  • Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory, Wiley, New York.

    Google Scholar 

  • Hillion, J., Canals, M., Torvinen, M., Casado, V., Scott, R., Terasmaa, A., Hansson, A., Watson, S., Olah, M. E., Mallol, J., Canela, E. I., Zoli, M., Agnati, L. F., Ibanez, C. F., Lluis, C., Franco, R., Ferré, S., and Fuxe, K. (2002). Coaggregation, cointernalization and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem. 277:18091–18097.

    Google Scholar 

  • Hunt, D. F. (2002). Personal commentary on proteomics. J. Proteome. Res. 1:15–19.

    Google Scholar 

  • Kauffman, S. (1993). The Origin of Order, Oxford University Press, New York.

    Google Scholar 

  • Kenakin, T. (1997). Agonist-specific receptor conformations. Trends Pharmacol. Sci. 18:416–417.

    Google Scholar 

  • Lee, H. J., Jung, K. M., Huang, Y. Z., Bennett, L. B., Lee, J. S., Mei, L., and Kim, T. W. (2002). Presenilin-dependent gamma-secretase-like intramembrane cleavage of ErbB-4. J. Biol. Chem. 277:6318–6232.

    Google Scholar 

  • Lefkowitz, R. J. (2000). The superfamily of heptahelical receptors. Nat. Cell Biol. 2:E133-E136.

    Google Scholar 

  • Lin, S. Y., Makino, K., Xia, W., Matin, A., Wen, Y., Kwong, K. Y., Bourguignon, L., and Hung, M. C. (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat. Cell Biol. 3:802–808.

    Google Scholar 

  • Marshall, F. H. (2001). Heterodimerization of G protein coupled receptors in the CNS. Curr. Opin. Pharmacol. 1:40–44.

    Google Scholar 

  • Milligan, G., and White, J. H. (2001). Protein–protein interactions at G-protein-coupled receptors. Trends Pharmacol. Sci. 22:513–518.

    Google Scholar 

  • Ni, C. Y., Murphy, M. P., Golde, T. E., and Carpenter, G. (2001). Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294:2179–2181.

    Google Scholar 

  • Ni, C. Y., Yuan, H., and Carpenter, G. (in press). Role of the ErbB-4 carboxyterminus in gamma-secretase cleavage. J. Biol. Chem.

  • Offterdinger, M., Schöfer, C., Weipoltshammer, K., and Grunt, T. W. (2002). c-erbB-3: A nuclear protein in mammary epithelial cells. J. Cell Biol. 157:929–940.

    Google Scholar 

  • Pagano, A., Rovelli, G., Mosbacher, J., Lohmann, T., Duthey, B., Stauffer, D., Ristig, D., Schuler, V., Meigel, I., Lampert, C., Stein, T., Prezeau, L., Blahos, J., Pin, J., Froestl, W., Kuhn, R., Heid, J., Kaupmann, K., and Bettler, B. (2001). C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J. Neurosci. 21:1189–1202.

    Google Scholar 

  • Parmentier, M. L., Prezeau, L., Bockaert, J., and Pin, J. P. (2002). A model for the functioning of family 3 GPCRs. Trends Pharmacol. Sci. 23:268–274.

    Google Scholar 

  • Pawson, T. (1995). Protein modules and signalling networks. Nature 373:573–580.

    Google Scholar 

  • Pierce, K. L., and Lefkowitz, R. J. (2001). Classical and new roles of §-arrestins in the regulation of G-protein-coupled receptors. Neuroscience 2:727–733.

    Google Scholar 

  • Reilly, J. F., and Maher, P. A. (2001). Importin beta-mediated nuclear import of fibroblast growth factor receptor: Role in cell proliferation. J. Cell Biol. 152:1307–1312.

    Google Scholar 

  • Robbins, M. J., Ciruela, F., Rhodes, A., and McIlhinney, R. A. (1999). Characterization of the dimerization of metabotropic glutamate receptors using an N-terminal truncation of mGluR1alpha. J. Neurochem. 72:2539–2547.

    Google Scholar 

  • Rostene, W. H., Fischette, C. T., and McEwen, B. S. (1983). Modulation by VIP of serotonin receptors in membranes from rat hippocampus. J. Neurosci. 3:2414–2419.

    Google Scholar 

  • Stock, J. (1996). Receptor signalling: Dimerization and beyond. Curr. Biol. 6:825–827.

    Google Scholar 

  • Torvinen, M., Ginés, S., Hillion, J., Latini, S., Canals, M., Ciruela, F., Bordoni, F., Staines, W., Pedata, F., Agnati, L. F., Lluis, C., Franco, R., Ferré, S., and Fuxe, K. (2002). Interactions among adenosine deaminase, adenosine A1 receptors and dopamine D1 receptors in stably cotransfected fibroblast cells and neurons. Neuroscience 113:709–719.

    Google Scholar 

  • Wang, X. J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24:455–463.

    Google Scholar 

  • Wess, J. (1998). Molecular basis of receptor/G protein-coupling selectivity. Pharmacol. Ther. 80:231–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnati, L.F., Ferré, S., Leo, G. et al. On the Molecular Basis of the Receptor Mosaic Hypothesis of the Engram. Cell Mol Neurobiol 24, 501–516 (2004). https://doi.org/10.1023/B:CEMN.0000023626.35717.5d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CEMN.0000023626.35717.5d

Navigation