Skip to main content

Advertisement

Log in

Secretin: Hypothalamic Distribution and Hypothesized Neuroregulatory Role in Autism

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. This study aims (1) to determine whether secretin is synthesized centrally, specifically by the HPA axis and (2) to discuss, on the basis of the findings in this and previous studies, secretin's possible neuroregulatory role in autism.

2. An immunocytochemical technique with single-cell resolution was performed in 12 age/weight-matched male rats pretreated with stereotaxic microinjection of colchicine (0.6 μg/kg) or vehicle into the lateral ventricle. Following 2-day survival, rats were anesthetized and perfused for immunocytochemistry. Brain segments were blocked and alternate frozen 30-μm sections incubated in rabbit antibodies against secretin, vasoactive intestinal peptide, glucagon, or pituitary-adenylate-cyclase-activating peptide. Adjacent sections were processed for Nissl stain. Preadsorption studies were performed with members of the secretin peptide family to demonstrate primary antibody specificity.

3. Specificity of secretin immunoreactivity (ir) was verified by clear-cut preadsorption control data and relatively high concentrations and distinct topographic localization of secretin ir to paraventricular/supraoptic and intercalated hypothalamic nuclei. Secretin levels were upregulated by colchicine, an exemplar of homeostatic stressors, as compared with low constitutive expression in untreated rats.

4. This study provides the first direct immunocytochemical demonstration of secretinergic immunoreactivity in the forebrain and offers evidence that the hypothalamus, like the gut, is capable of synthesizing secretin. Secretin's dual expression by gut and brain secretin cells, as well as its overlapping central distribution with other stress-adaptation neurohormones, especially oxytocin, indicates that it is stress-sensitive. A neuroregulatory relationship between the peripheral and central stress response systems is suggested, as is a dual role for secretin in conditioning both of those stress-adaptation systems. Colchicine-induced upregulation of secretin indicates that secretin may be synthesized on demand in response to stress, a possible mechanism of action that may underlie secretin's role in autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Agassandian, K., Fazan, V. P., Adanina, V., and Talman W. T. (2002). Direct projections from the cardiovascular nucleus tractus solitarii to pontine preganglionic parasympathetic neurons: A link to cerebrovascular regulation. J. Comp. Neurol. 452(3): 242-254.

    Google Scholar 

  • Aguado, F., Pozas, E., and Blasi, J. (1999). Colchicine administration in the rat central nervous system induces SNAP-25 expression. Neuroscience 93(1): 275-283.

    Google Scholar 

  • Anisman, H., Zaharia, M. D., Meaney, M. J., and Merali, Z. (1998). Do early-life events permanently alter behavioral and hormonal responses to stressors? Int. J. Dev. Neurosci. 16(3/4): 149-164.

    Google Scholar 

  • Armando, I., Carranza, A., Nishimura, Y., Hoe, K. L., Barontini, M., Terron, J. A., Falcon-Neri, A., Ito, T., Juorio, A. V., and Saavedra, J. M. (2001). Peripheral administration of an angiotensin II AT(1) receptor antagonist decreases the hypothalamic-pituitary-adrenal response to isolation stress. Endocrinology 142(9): 3880-3889.

    Google Scholar 

  • Barlow, B., and Santulli, T. V. (1975). Importance of multiple episodes of hypoxia or cold stress on the development of enterocolitis in an animal model. Surgery 77(5): 687-690.

    Google Scholar 

  • Bauman, M., and Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology 35(6): 866-874.

    Google Scholar 

  • Bayliss, W. M., and Starling, E. H. (1902). The mechanism of pancreatic secretion. J. Physiol. (Lond.) 28: 325-353.

    Google Scholar 

  • Bell, P. M., Henry, R. W., Buchanan, K. D., and Alberti, K. G. (1984). The effect of starvation on the gastro-entero-pancreatic hormonal and metabolic responses to exercise. (GEP hormones in starvation and exercise). Diabete Metab. 10(3): 194-198.

    Google Scholar 

  • Bloom, S. R., Mitchell, S. J., Greenberg, G. R., Christofides, N., Domschke, W., Domschke, S., Mitznegg, P., and Demling, L. (1978). Release of VIP, secretin and motilin after duodenal acidification in man. Acta Hepatogastroenterol. (Stuttg.) 25(5): 365-368.

    Google Scholar 

  • Boccia, D., Stolfi, I., Lana, S., and Moro, M. L. (2001). Nosocomial necrotising enterocolitis outbreaks: epidemiology and control measures. Eur. J. Pediatr. 160(6): 385-391.

    Google Scholar 

  • Bojanowska, E., Juszczak, M., Guzek, J. W., and Dabrowski, R. (1999). The pineal and oxytocin synthesis. J. Physiol. Pharmacol. 50(1): 121-128.

    Google Scholar 

  • Booth, R., Charlton, R., Hughes, C., and Happe, F. (2003). Disentangling weak coherence and executive dysfunction: Planning drawing in autism and attention-deficit/hyperactivity disorder. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1430): 387-392.

    Google Scholar 

  • Bredy, T. W., Humpartzoomian, R. A., Cain, D. P., and Meaney, M. J. (2003). Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience 118(2): 571-576.

    Google Scholar 

  • Bregonzio, C., Armando, I., Ando, H., Jezova, M., Baiardi, G., and Saavedra, J. M. (2003). Anti-inflammatory effects of angiotensin II AT1 receptor antagonism prevent stress-induced gastric injury. Am. J. Physiol. Gastrointest. Liver Physiol. 285(2): G414-G423.

    Google Scholar 

  • Breiner, J., and Beck, S. (1984). Parents as change agents in the management of their developmentally delayed children's noncompliant behaviors: A critical review. Appl. Res. Ment. Retard. 5(2): 259-278.

    Google Scholar 

  • Chang, T. M., Berger-Ornstein, L., and Chey, W. Y. (1985). Presence of biologically and immunologically active secretin-like substance in the mammalian brain. Peptides 6(2): 193-198.

    Google Scholar 

  • Chang, T. M., Chang, C. H., Wagner, D. R., and Chey, W. Y. (1999). Porcine pancreatic phospholipase A2 stimulates secretin release from secretin-producing cells. J. Biol. Chem. 274(16): 10758-10764.

    Google Scholar 

  • Charlton, C. G., Miller, R. L., Crawley, J. N., Handelmann, G. E., and O'Donohue, T. L. (1983). Secretin modulation of behavioral and physiological functions in the rat. Peptides 4(5): 739-742.

    Google Scholar 

  • Charlton, C. G., O'Donohue, T. L., Miller, R. L., Jacobowitz, D. M. (1981). Secretin immunoreactivity in rat and pig brain. Peptides 2(Suppl. 1): 45-49.

    Google Scholar 

  • Chey, W. Y., and Chang, T. (2001). Neural hormonal regulation of exocrine pancreatic secretion. Pancreatology 1(4): 320-335.

    Google Scholar 

  • Chriguer, R. S., Rocha, M. J., Antunes-Rodrigues, J., and Franci, C. R. (2001). Hypothalamic atrial natriuretic peptide and secretion of oxytocin. Brain Res. 889 (1/2): 239-242.

    Google Scholar 

  • Chugani, D. C., Sundram, B. S., Behen, M., Lee, M. L., and Moore, G. J. (1999). Evidence of altered energy metabolism in autistic children. Prog. Neuropsychopharmacol. Biol. Psychiatry 23(4): 635-641.

    Google Scholar 

  • Ciriello, J., Rosas-Arellano, M. P., Solano-Flores, L. P., de Oliveira, C. V. (2003). Identification of neurons containing orexin-B (hypocretin-2) immunoreactivity in limbic structures. Brain Res. 967 (1/2): 123-131.

    Google Scholar 

  • Coniglio, S. J., Lewis, J. D., Lang, C., Burns, T. G., Subhani-Siddique, R., Weintraub, A., Schub, H., and Holden, E. W. (2001). A randomized, double-blind, placebo-controlled trial of single-dose intravenous secretin as treatment for children with autism. J. Pediatr. 138(5): 649-655.

    Google Scholar 

  • Corona, R., Dissanayake, C., Arbelle, S., Wellington, P., and Sigman, M. (1998). Is affect aversive to young children with autism? Behavioral and cardiac responses to experimenter distress. Child Dev. 69(6): 1494-1502.

    Google Scholar 

  • Davis, E., Fennoy, I., Laraque, D., Kanem, N., Brown, G., and Mitchell, J. (1992). Autism and developmental abnormalities in children with perinatal cocaine exposure. J. Natl. Med. Assoc. 84(4): 315-319.

    Google Scholar 

  • de Lecea, L., Kilduff, T. S., Peyron, C., Gao, X., Foye, P. E., Danielson, P. E., Fukuhara, C., Battenberg, E. L., Gautvik, V. T., Bartlett, F. S., II, Frankel, W. N., van den Pol, A. N., Bloom, F. E., Gautvik, K. M., and Sutcliffe, J. G. (1998). The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U.S.A. 95(1): 322-327.

    Google Scholar 

  • D'Eufemia, P., Celli, M., Finocchiaro, R., Pacifico, L., Viozzi, L., Zaccagnini, M., Cardi, E., and Giardini, O. (1996). Abnormal intestinal permeability in children with autism. Acta Paediatr. 85(9): 1076-1079.

    Google Scholar 

  • Diggle, T., McConachie, H. R., and Randle, V. R. (2003). Parent-mediated early intervention for young children with autism spectrum disorder. Cochrane Database Syst. Rev. (1): CD003496.

    Google Scholar 

  • Dunn-Geier, J., Ho, H. H., Auersperg, E., Doyle, D., Eaves, L., Matsuba, C., Orrbine, E., Pham, B., and Whiting, S. (2000). Effect of secretin on children with autism: A randomized controlled trial. Dev. Med. Child Neurol. 42(12): 796-802.

    Google Scholar 

  • Eriksson, M., Bjorkstrand, E., Smedh, U., Alster, P., Matthiesen, A. S., and Uvnas-Moberg, K. (1994). Role of vagal nerve activity during suckling. Effects on plasma levels of oxytocin, prolactin, VIP, somatostatin, insulin, glucagon, glucose and of milk secretion in lactating rats. Acta Physiol. Scand. 151(4): 453-459.

    Google Scholar 

  • Francis, D. D., Young, L. J., Meaney, M. J., and Insel, T. R. (2002). Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (V1a) receptors: Gender differences. J. Neuroendocrinol. 14(5): 349-353.

    Google Scholar 

  • Freeman, J. H., Jr., Weible, A., Rossi, J., and Gabriel, M. (1997). Lesions of the entorhinal cortex disrupt behavioral and neuronal responses to context change during extinction of discriminative avoidance behavior. Exp. Brain Res. 115(3): 445-457.

    Google Scholar 

  • Fremeau, R. T., Jr., Korman, L. Y., and Moody, T. W. (1986). Secretin stimulates cyclic AMP formation in the rat brain. J. Neurochem. 46(6): 1947-1955.

    Google Scholar 

  • Friedman, G. B., Taylor, C. T., Parkos, C. A., and Colgan, S. P. (1998). Epithelial permeability induced by neutrophil transmigration is potentiated by hypoxia: Role of intracellular cAMP. J. Cell Physiol. 176(1): 76-84.

    Google Scholar 

  • Fuxe, K., Andersson, K., Hokfelt, T., Mutt, V., Ferland, L., Agnati, L. F., Ganten, D., Said, S., Eneroth, P., and Gustafsson, J. A. (1979). Localization and possible function of peptidergic neurons and their interactions with central catecholamine neurons, and the central actions of gut hormones. Fed. Proc. 38(9): 2333-2340.

    Google Scholar 

  • Gabry, K. E., Chrousos, G. P., Rice, K. C., Mostafa, R. M., Sternberg, E., Negrao, A. B., Webster, E. L., McCann, S. M., and Gold, P. W. (2002). Marked suppression of gastric ulcerogenesis and intestinal responses to stress by a novel class of drugs. Mol. Psychiatry 7(5): 474-483.

    Google Scholar 

  • Gandhi, S., Tsueshita, T., Onyuksel, H., Chandiwala, R., and Rubinstein, I. (2002). Interactions of human secretin with sterically stabilized phospholipid micelles amplify peptide-induced vasodilation in vivo. Peptides 23(8): 1433-1439.

    Google Scholar 

  • Gauthier, A., Puente, J. L., and Finlay, B. B. (2003). Secretin of the enteropathogenic Escherichia coli type III secretion system requires components of the type III apparatus for assembly and localization. Infect Immun. 71(6): 3310-3319.

    Google Scholar 

  • Gershon, M. D. (1998). The Second Brain: A Groundbreaking New Understanding of Nervous Disorders of the Stomach and Intestine, Harper Collins, New York.

    Google Scholar 

  • Golanov, E. V., Ruggiero, D. A., and Reis, D. J. (2000). A brainstem area mediating cerebrovascular and EEG responses to hypoxic excitation of rostral ventrolateral medulla in rat. J. Physiol. 529(Pt. 2): 413-429.

    Google Scholar 

  • Goulet, M., Shiromani, P. J., Ware, C. M., Strong, R. A., Boismenu, R., Rusche, J. R. (2003). A secretin i.v. infusion activates gene expression in the central amygdala of rats. Neuroscience 118(4): 881-888.

    Google Scholar 

  • Graveling, R. A., and Brooke, J. D. (1978). Hormonal and cardiac response of autistic children to changes in environmental stimulation. J. Autism Child Schizophr. 8(4): 441-455.

    Google Scholar 

  • Guilloteau, P., Chayvialle, J. A., Toullec, R., Grongnet, J. F., and Bernard, C. (1992). Early-life patterns of plasma gut regulatory peptide levels in calves: Effects of the first meals. Biol. Neonate. 61(2): 103-109.

    Google Scholar 

  • Harmar, A. J. (2001). Family-B G-protein-coupled receptors. Genome Biol. 2(12): Reviews 3013.

    Google Scholar 

  • Haznedar, M. M., Buchsbaum, M. S., Wei, T. C., Hof, P. R., Cartwright, C., Bienstock, C. A., and Hollander, E. (2000). Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am. J. Psychiatry 157(12): 1994-2001.

    Google Scholar 

  • Helou, C. M., Imbert-Teboul, M., Doucet, A., Rajerison, R., Chollet, C., Alhenc-Gelas, F., and Marchetti, J. (2003). Angiotensin receptor subtypes in thin and muscular juxtamedullary efferent arterioles of rat kidney. Am. J. Physiol. Renal. Physiol. 285(3): F507-F514.

    Google Scholar 

  • Hollander, E., King, A., Delaney, K., Smith, C. J., and Silverman, J. M. (2003a). Obsessive-compulsive behaviors in parents of multiplex autism families. Psychiatry Res. 117(1): 11-16.

    Google Scholar 

  • Hollander, E., Novotny, S., Hanratty, M., Yaffe, R., DeCaria, C. M., Aronowitz, B. R., and Mosovich, S. (2003b). Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger's disorders. Neuropsychopharmacology 28(1): 193-198.

    Google Scholar 

  • Horvath, K., Papadimitriou, J. C., Rabsztyn, A., Drachenberg, C., and Tildon, J. T. (1999). Gastrointestinal abnormalities in children with autistic disorder. J. Pediatr. 135(5): 559-563.

    Google Scholar 

  • Horvath, K., and Perman, J. A. (2002). Autism and gastrointestinal symptoms. Curr. Gastroenterol Rep. 4(3): 251-258.

    Google Scholar 

  • Horvath, K., Stefanatos, G., Sokolski, K. N., Wachtel, R., Nabors, L., and Tildon, J. T. (1998). Improved social and language skills after secretin administration in patients with autistic spectrum disorders. J. Assoc. Acad. Minor. Phys. 9(1): 9-15.

    Google Scholar 

  • Houben, H., and Denef, C. (1994). Bioactive peptides in anterior pituitary cells. Peptides 15(3): 547-582.

    Google Scholar 

  • Ichihara, K., Eng, J., and Yalow, R. S. (1983). Ontogeny of immunoreactive CCK, VIP and secretin in rat brain and gut. Biochem. Biophys. Res. Commun. 112(3): 891-898.

    Google Scholar 

  • Iqbal Z. (2002). Ethical issues involved in the implementation of a differential reinforcement of inappropriate behaviour programme for the treatment of social isolation and ritualistic behaviour in an individual with intellectual disabilities. J. Intellect. Disabil. Res. 46(Pt. 1): 82-93.

    Google Scholar 

  • Itoh, N., Furuya, T., Ozaki, K., Ohta, M., and Kawasaki, T. (1991). The secretin precursor gene. Structure of the coding region and expression in the brain. J. Biol. Chem. 266(19): 12595-12598.

    Google Scholar 

  • Jezova, M., Armando, I., Bregonzio, C., Yu, Z. X., Qian, S., Ferrans, V. J., Imboden, H., and Saavedra, J. M. (2003). Angiotensin II AT(1) and AT(2) receptors contribute to maintain basal adrenomedullary norepinephrine synthesis and tyrosine hydroxylase transcription. Endocrinology 144(5): 2092-tt22101.

    Google Scholar 

  • Jin, H. O., Lee, K. Y., Chang, T. M., Chey, W. Y., and Dubois, A. (1994). Secretin: A physiological regulator of gastric emptying and acid output in dogs. Am. J. Physiol. 267(4, Pt. 1): 702-708.

    Google Scholar 

  • Jones, D., and Gonzalez-Lima, F. (2001). Mapping Pavlovian conditioning effects on the brain: Blocking, contiguity, and excitatory effects. J. Neurophysiol. 86(2): 809-823.

    Google Scholar 

  • Jones, G. R., Singer, P. P., and Bannach, B. (2002). Application of LC-MS analysis to a colchicine fatality. J. Anal. Toxicol. 26(6): 365-369.

    Google Scholar 

  • Kern, J. K., Van Miller, S., Evans, P. A., and Trivedi, M. H. (2002). Efficacy of porcine secretin in children with autism and pervasive developmental disorder. J. Autism Dev. Disord. 32(3): 153-160.

    Google Scholar 

  • Kobayashi, R., Takenoshita, Y., Kobayashi, H., Kamijo, A., Funaba, K., and Takarabe, M. (2001). Early intervention for infants with autistic spectrum disorders in Japan. Pediatr. Int. 43(2): 202-208.

    Google Scholar 

  • Kopin, A. S., Wheeler, M. B., and Leiter, A. B. (1990). Secretin: Structure of the precursor and tissue distribution of the mRNA. Proc. Natl. Acad. Sci. U.S.A. 87(6): 2299-2303.

    Google Scholar 

  • Koren, G. (2001). Repeated doses of porcine secretin in the treatment of autism: A randomized, placebo-controlled trial. Pediatrics 107(5): E71.

    Google Scholar 

  • Koves, K., Kausz, M., Reser, D., and Horvath, K. (2002). What may be the anatomical basis that secretin can improve the mental functions in autism? Regul. Pept. 109(1-3): 167-172.

    Google Scholar 

  • Lamson, D. W., and Plaza, S. M. (2001). Transdermal secretin for autism—A case report. Altern. Med. Rev. 6(3): 311-313.

    Google Scholar 

  • Langworthy-Lam, K. S., Aman, M. G., and Van Bourgondien, M. E. (2002). Prevalence and patterns of use of psychoactive medicines in individuals with autism in the Autism Society of North Carolina. J. Child Adolesc. Psychopharmacol. 12(4): 311-321.

    Google Scholar 

  • Lauterbach, H. H., Lehmann, E., Escobar-Jimenez, F., Mattes, P., and Raptis, S. (1980). Behavior of secretin in the hypoxia-immobilisation stress on the rat. Eur. Surg. Res. 12(2): 103-107.

    Google Scholar 

  • Leong, D. S., Terron, J. A., Falcon-Neri, A., Armando, I., Ito, T., Johren, O., Tonelli, L. H., Hoe, K. L., and Saavedra, J. M. (2002). Restraint stress modulates brain, pituitary and adrenal expression of angiotensin II AT(1A), AT(1B) and AT(2) receptors. Neuroendocrinology 75(4): 227-240.

    Google Scholar 

  • Li, P., Chang, T. M., and Chey, W. Y. (1998). Secretin inhibits gastric acid secretion via a vagal afferent pathway in rats. Am. J. Physiol. 275(1, Pt. 1): G22-G28.

    Google Scholar 

  • Li, Y. W., and Guyenet, P. G. (1996). Angiotensin II decreases a resting K + conductance in rat bulbospinal neurons of the C1 area. Circ. Res. 78(2): 274-282.

    Google Scholar 

  • Lightdale, J. R., Hayer, C., Duer, A., Lind-White, C., Jenkins, S., Siegel, B., Elliott, G. R., and Heyman, M. B. (2001). Effects of intravenous secretin on language and behavior of children with autism and gastrointestinal symptoms: A single-blinded, open-label pilot study. Pediatrics 108(5): 90.

    Google Scholar 

  • Loewy, A. D. (1991). Forebrain nuclei involved in autonomic control. Prog. Brain Res. 87: 253-268.

    Google Scholar 

  • Lopez, M. J., Upchurch, B. H., Rindi, G., and Leiter, A. B. (1995). Studies in transgenic mice reveal potential relationships between secretin-producing cells and other endocrine cell types. J. Biol. Chem. 270(2): 885-891.

    Google Scholar 

  • Lucas, A., Adrian, T. E., Bloom, S. R., Aynsley-Green, A. (1980). Plasma secretin in neonates. Acta Paediatr. Scand. 69(2): 205-210.

    Google Scholar 

  • Lucas, A., Bloom, S. R., and Aynsley-Green, A. (1983). Metabolic and endocrine consequences of depriving preterm infants of enteral nutrition. Acta Paediatr. Scand. 72(2): 245-249.

    Google Scholar 

  • Matthiesen, A. S., Ransjo-Arvidson, A. B., Nissen, E., and Uvnas-Moberg, K. (2001). Postpartum maternal oxytocin release by newborns: Effects of infant hand massage and sucking. Birth 28(1): 13-19.

    Google Scholar 

  • McEwen, B. S. (2001). Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Ann. N.Y. Acad. Sci. 933: 265-277.

    Google Scholar 

  • McKay, T., Reynolds, P., Jezzard, S., Curiel, D., and Coutelle, C. (2002). Secretin-mediated gene delivery, a specific targeting mechanism with potential for treatment of biliary and pancreatic disease in cystic fibrosis. Mol. Ther. 5(4): 447-454.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., Bhatnagar, S., and Sapolsky, R. M. (1991). Postnatal handling attenuates certain neuroendocrine, anatomical, and cognitive dysfunctions associated with aging in female rats. Neurobiol. Aging. 12(1): 31-38.

    Google Scholar 

  • Meaney, M. J., Aitken, D. H., van Berkel, C., Bhatnagar, S., and Sapolsky, R. M. (1988). Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239(4841, Pt. 1): 766-768.

    Google Scholar 

  • Militerni, R., Bravaccio, C., Falco, C., Fico, C., and Palermo, M. T. (2002). Repetitive behaviors in autistic disorder. Eur. Child Adolesc. Psychiatry 11(5): 210-218.

    Google Scholar 

  • Miller, T. A., Llanos, O. L., Swierczek, J. S., Rayford, P. L., and Thompson, J. C. (1978). Concentrations of gastrin and secretin in the alimentary tract of the cat. Surgery 83(1): 90-93.

    Google Scholar 

  • Mineo, H., Oyamada, T., and Kato, S. (1990). Effect of feeding on plasma secretin concentrations in sheep. Res. Vet. Sci. 49(2): 157-179.

    Google Scholar 

  • Mutt, V., Carlquist, M., and Tatemoto, K. (1979). Secretin-like bioactivity in extracts of porcine brain. Life Sci. 25(20): 1703-1707.

    Google Scholar 

  • Nelson, K. B., Grether, J. K., Croen, L. A., Dambrosia, J. M., Dickens, B. F., Jelliffe, L. L., Hansen, R. L., and Phillips, T. M. (2001). Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann. Neurol. 49(5): 597-606.

    Google Scholar 

  • Ng, S. S., Yung, W. H., and Chow, B. K. (2002). Secretin as a neuropeptide. Mol. Neurobiol. 26(1): 97-107.

    Google Scholar 

  • Nussdorfer, G. G., Bahcelioglu, M., Neri, G., and Malendowicz, L. K. (2000). Secretin, glucagon, gastric inhibitory polypeptide, parathyroid hormone, and related peptides in the regulation of the hypothalamus-pituitary-adrenal axis. Peptides 21(2): 309-324.

    Google Scholar 

  • O'Donohue, T. L., Charlton, C. G., Miller, R. L., Boden, G., and Jacobowitz, D. M. (1981). Identification, characterization, and distribution of secretin immunoreactivity in rat and pig brain. Proc. Natl. Acad. Sci. U.S.A. 78(8): 5221-5224.

    Google Scholar 

  • Oektedalen, O., Opstad, P. K., Schaffalitzky de Muckadell, O. B. (1982). Secretin—A new stress hormone? Regul. Pept. 4(4): 213-219.

    Google Scholar 

  • Ogai, M., Matsumoto, H., Suzuki, K., Ozawa, F., Fukuda, R., Uchiyama, I., Suckling, J., Isoda, H., Mori, N., and Takei, N. (2003). fMRI study of recognition of facial expressions in high-functioning autistic patients. Neuroreport 14(4): 559-563.

    Google Scholar 

  • Ohta, M., Funakoshi, S., Kawasaki, T., and Itoh, N. (1992). Tissue-specific expression of the rat secretin precursor gene. Biochem. Biophys. Res. Commun. 183(2): 390-395.

    Google Scholar 

  • Owley, T., McMahon, W., Cook, E. H., Laulhere, T., South, M., Mays, L. Z., Shernoff, E. S., Lainhart, J., Modahl, C. B., Corsello, C., Ozonoff, S., Risi, S., Lord, C., Leventhal, B. L., and Filipek, P. A. (2001). Multisite, double-blind, placebo-controlled trial of porcine secretin in autism. J. Am. Acad. Child Adolesc. Psychiatry 40(11): 1293-1299.

    Google Scholar 

  • Paquette, T. L., Shulman, D. F., Alpers, D. H., and Jaffe, B. M. (1982). Postnatal development of intestinal secretin in rats and guinea pigs. Am. J. Physiol. 243(6): G511-G5117.

    Google Scholar 

  • Park, Y. D. (2003). The effects of vagus nerve stimulation therapy on patients with intractable seizures and either Landau-Kleffner syndrome or autism. Epilepsy Behav. 4(3): 286-290.

    Google Scholar 

  • Paxinos, G., and Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates, Academic Press, New York.

    Google Scholar 

  • Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory. Psychophysiology 32(4): 301-318.

    Google Scholar 

  • Posey, D. J., and McDougle, C. J. (2000). The pharmacotherapy of target symptoms associated with autistic disorder and other pervasive developmental disorders. Harv. Rev. Psychiatry 8(2): 45-63.

    Google Scholar 

  • Richer, J. M., and Coss, R. G. (1976). Gaze aversion in autistic and normal children. Acta Psychiatr. Scand. 53(3): 193-210.

    Google Scholar 

  • Rinaman, L., Levitt, P., and Card, J. P. (2000). Progressive postnatal assembly of limbic-autonomic circuits revealed by central transneuronal transport of pseudorabies virus. J. Neurosci. 20(7): 2731-2741.

    Google Scholar 

  • Roberts, W., Weaver, L., Brian, J., Bryson, S., Emelianova, S., Griffiths, A. M., MacKinnon, B., Yim, C., Wolpin, J., and Robinson, T. W. (2001). Homeopathic secretin in autism: A clinical pilot study. Br. Homeopath. J. 90(2): 86-91.

    Google Scholar 

  • Rogers, I. M., Davidson, D. C., Lawrence, J., and Buchanan, K. D. (1975). Neonatal secretion of secretin. Arch. Dis. Child 50(2): 120-122.

    Google Scholar 

  • Ruggiero, D. A., Ross, C. A., Anwar, M., Park, D. H., Joh, T. H., and Reis, D. J. (1985). Distribution of neurons containing phenylethanolamine N-methyltransferase in medulla and hypothalamus of rat. J. Comp. Neurol. 239(2): 127-154.

    Google Scholar 

  • Ruggiero, D. A., Welch-Horan, T. B., Keune, J. D., Anwar, N., Anwar, M., Ludwig, R. J., and Welch, M. G. (2003). Secretin: Distribution, Specificity Support Neuroregulatory Role in Autism. In 33rd Annual Meeting, Neurosci Abstracts.

  • Rumsey, J. M., and Ernst, M. (2000). Functional neuroimaging of autistic disorders. Ment. Retard. Dev. Disabil. Res. Rev. 6(3): 171-179.

    Google Scholar 

  • Samson, W. K., Lumpkin, M. D., and McCann, S. M. (1984). Presence and possible site of action of secretin in the rat pituitary and hypothalamus. Life Sci. 34(2): 155-163.

    Google Scholar 

  • Sandler, A. D., Sutton, K. A., DeWeese, J., Girardi, M. A., Sheppard, V., and Bodfish, J. W. (1999). Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. N. Engl. J. Med. 341(24): 1801-1806.

    Google Scholar 

  • Schultz, R. T., Grelotti, D. J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., and Skudlarski, P. (2003). The role of the fusiform face area in social cognition: Implications for the pathobiology of autism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1430): 415-427.

    Google Scholar 

  • Steptoe, A., Cropley, M., and Joekes, K. (1999). Job strain, blood pressure and response to uncontrollable stress. J. Hypertens. 17(2): 193-200.

    Google Scholar 

  • Strauss, E., and Yalow, R. S. (1978). Immunoreactive secretin in gastrointestinal mucosa of several mammalian species. Gastroenterology 75(3): 401-404.

    Google Scholar 

  • Sved, A. F., Mancini, D. L., Graham, J. C., Schreihofer, A. M., and Hoffman, G. E. (1994). PNMT-containing neurons of the C1 cell group express c-fos in response to changes in baroreceptor input. Am J Physiol. 266(2, Pt. 2): R361-R367.

    Google Scholar 

  • Swanson, L. W. (1998). Brain Maps: Structure of the Rat Brain, 2nd Revision, Elsevier Science B. V., Amsterdam, the Netherlands.

    Google Scholar 

  • Talman, W. T., and Kelkar P. (1993). Neural control of the heart. Central and peripheral. Neurol. Clin. 11(2): 239-256.

    Google Scholar 

  • Tanoue, Y., and Oda, S. (1989). Weaning time of children with infantile autism. J. Autism Dev. Disord. 19(3): 425-434.

    Google Scholar 

  • Teufel, M., Luik, G., and Niessen, K. H. (1986). [Gastrin, secretin, VIP and motilin in children with mucoviscidosis and Crohn disease]. Monatsschr. Kinderheilkd. 134(3): 132-137.

    Google Scholar 

  • Tinbergen, N., and Tinbergen, E. A. (1983). Autistic Children—New Hope for a Cure, George, Allen and Unwin, London.

    Google Scholar 

  • Torrente, F., Ashwood, P., Day, R., Machado, N., Furlano, R. I., Anthony, A., Davies, S. E., Wakefield, A. J., Thomson, M. A., Walker-Smith, J. A., and Murch, S. H. (2002). Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol. Psychiatry 7(4): 375-382.

    Google Scholar 

  • Uno, H., Tarara, R., Else, J. G., Suleman, M. A., and Sapolsky, R. M. (1989). Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 9(5): 1705-1711.

    Google Scholar 

  • Vacher, C. M., Fretier, P., Creminon, C., Calas, A., and Hardin-Pouzet, H. (2002). Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei. J Neurosci. 22(5): 1513-1522.

    Google Scholar 

  • Veerendra-Kumar, M. H., and Gupta, Y. K. (2002). Intracerebroventricular administration of colchicine produces cognitive impairment associated with oxidative stress in rats. Pharmacol. Biochem. Behav. 73(3): 565-571.

    Google Scholar 

  • Walker, J. K., Premont, R. T., Barak, L. S., Caron, M. G., and Shetzline, M. A. (1999). Properties of secretin receptor internalization differ from those of the beta(2)-adrenergic receptor. J. Biol. Chem. 274(44): 31515-31523.

    Google Scholar 

  • Warren, R. P., Odell, J. D., Warren, W. L., Burger, R. A., Maciulis, A., Daniels, W. W., and Torres, A. R. (1997). Brief Report: Immunoglobulin A deficiency in a subset of autistic subjects. J. Autism Dev. Disord. 27(2): 187-192.

    Google Scholar 

  • Wasserman, A. M., Ferreira, M., Jr., Sahibzada, N., Hernandez, Y. M., and Gillis, R. A. (2002). GABA-mediated neurotransmission in the ventrolateral NTS plays a role in respiratory regulation in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283(6): R1423-R1441.

    Google Scholar 

  • Welch, M. G. (1983a). Retrieval from autism through mother-child holding. In Tinbergen, N., and Tinbergen, E. A., Autistic Children—New Hope for a Cure, George, Allen and Unwin, London.

    Google Scholar 

  • Welch, M. G. (1983b). Retrieval from autism through mother-child holding therapy. In Call, J. D., Galenson, E., and Tyson, R. L. (eds.), Frontiers of Infant Psychiatry, Basic Books, New York, 450.

    Google Scholar 

  • Welch, M. G. (1987). Toward prevention of developmental disorders. Pa Med. 90(3): 47-52.

    Google Scholar 

  • Welch, M. G. (1988). Holding Time, Simon and Schuster, New York.

    Google Scholar 

  • Welch, M. G. (1989). Holding Time: How When Why. In Proceedings of the First International Congress of Holding Therapy, Regensberg, Germany.

    Google Scholar 

  • Welch, M. G., and Chaput P. (1988). Mother-child holding therapy and autism. Pa Med. 91(10): 33-38.

    Google Scholar 

  • Welch, M. G., Keune, J. D., Welch-Horan, T. B., Anwar, M., Anwar, N., and Ruggiero, D. A. (2003a). Secretin activates visceral brain regions in rat including areas abnormal in autism. Cell Mol Neurobiol. 23 (4/5): 817-837.

    Google Scholar 

  • Welch, M. G., Welch-Horan, T. B., Keune, J. D., Anwar, N., Anwar, M., Ludwig, R. J., and Ruggiero, D. A. (2003b). Neurohormonal resolution of genetic and acquired IBD and secondary brain activation in areas abnormal in autism. In 33rd Annual Meeting, Neuroscience Abstracts.

  • Welch, M. G., Keune, J. D., Welch-Horan, T. B., and Ruggiero, D. A. (2002a). Secretin in autism. Soci. Neurosci. Press Book, 32nd Annu. Meet. II: 572-574.

    Google Scholar 

  • Welch, M. G., Keune, J. D., Welch-Horan, T. B., and Ruggiero, D. A. (2002b). Secretin activates visceral brain regions including areas abnormal in autism. In 32nd Annual Meeting, Neuroscience Abstracts.

  • Wheeler, G. (2003). RG-1068 RepliGen. Curr. Opin. Investig. Drugs 4(1): 66-71.

    Google Scholar 

  • White, J. F. (2003). Intestinal pathophysiology in autism. Exp. Biol. Med. (Maywood) 228(6): 639-649.

    Google Scholar 

  • Yung, W. H., Leung, P. S., Ng, S. S., Zhang, J., Chan, S. C., and Chow, B. K. (2001). Secretin facilitates GABA transmission in the cerebellum. J. Neurosci. 21(18): 7063-7068.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Welch, M.G., Keune, J.D., Welch-Horan, T.B. et al. Secretin: Hypothalamic Distribution and Hypothesized Neuroregulatory Role in Autism. Cell Mol Neurobiol 24, 219–241 (2004). https://doi.org/10.1023/B:CEMN.0000018618.59015.a2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CEMN.0000018618.59015.a2

Navigation