Cellular and Molecular Neurobiology

, Volume 24, Issue 1, pp 109–122 | Cite as

Expression of Expanded Polyglutamine Protein Induces Behavioral Changes in Drosophila (Polyglutamine-Induced Changes in Drosophila)

  • Yun-Taik Kim
  • Sang Min Shin
  • Won Yong Lee
  • Gyeong-Moon Kim
  • Dong Kyu Jin


Spinocerebellar ataxia type-3 or Machado–Joseph disease (SCA3/MJD) is an autosomal dominant neurodegenerative disease caused by triplet nucleotide expansion. The expansion of the polyglutamine tract near the C terminus of the MJD1 gene product, ataxin-3, above a threshold of 40 glutamine repeats causes neuronal loss and degeneration. The expanded ataxin-3 forms aggregates, and nuclear inclusions, within neurons, possibly due to the misfolding of mutant proteins. Here we report upon the behavioral test changes related to truncated and expanded forms of MJD protein (MJDtr) in Drosophila, and show that expanded MJDtr, when expressed in the nervous system, causes characteristic locomotor dysfunction and anosmia. This phenomenon has not been previously reported in humans or in transgenic Drosophila models. In addition, the in vivo expression of the antiapoptotic gene bcl-2 showed no evidence of ameliorating the deleterious effect of MJDtr-Q78s, either in the eye or in the nervous system. The study shows that such Drosophila transgenic models express olfactory dysfunction and ataxic behavior as observed in human patients.

polyglutamine Machado–Joseph disease (MJD) spinocerebellar ataxia 3 (SCA3) Drosophila behavioral dysfunction bcl-2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brand, A. H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401-415.Google Scholar
  2. Degterev, A., Boyce, M., and Yuan, J. (2001). The channel of death. J. Cell Biol. 155:695-697.Google Scholar
  3. Ellis, M. C., O'Neill, E. M., and Rubin, G. M. (1993). Expression of Drosophila glass protein and evidence for negative regulation of its activity in non-neuronal cells by another DNA-binding protein. Development 119:855-865.Google Scholar
  4. Evert, B. O., Wullner, U., and Klockgether, T. (2000). Cell death in polyglutamine diseases. Cell Tissue Res. 301:189-204.Google Scholar
  5. Feany, M. B., and Bender, W. W. (2000). A Drosophila model of Parkinson's disease. Nature 404:394-398.Google Scholar
  6. Fernadez-Funez, P., Nino-Rosales, M. L., de Gouyon, B., She, W. C., Luchak, J. M., Martinez, P., Turiegano, E., Benito, J., Capovilla, M., Skinner, P. J., McCall, A., Canal, I., Orr, H. T., Zoghbi, H. Y., and Botas, J. (2000). Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408:101-106.Google Scholar
  7. Gorman, M., and Baker, B. S. (1994). How flies make one equal two: Dosage compensation in Drosophila. Trends Genet. 10:376-380.Google Scholar
  8. Jackson, G. R., Salecker, I., Dong, X., Yao, X., Arnheim, N., Faber, P. W., MacDonald, M. E., and Zipursky, S. L. (1998). Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor Neuron 21:633-642.Google Scholar
  9. Kazemi-Esfaranji, P., and Benzer, S. (2000). Genetic suppression of polyglutamine toxicity in Drosophila. Science 287:1837-1840.Google Scholar
  10. Klockgether, T., and Evert, B. (1998). Genes involved in hereditary ataxias. Trends Neurosci. 21:413-418.Google Scholar
  11. Kouroku, Y., Fujita, E., Urase, K., Tsuru, T., Setsuie, R., Kikuchi, T., Yagi, Y., Momoi, M. Y., and Momoi, T. (2000). Caspases that ae activated during generation of nuclear polyglutamine aggregates are necessary for DNA fragmentation but not sufficient for cell death. J. Neurosci. Res. 62:547-556.Google Scholar
  12. Li, S. H., Lam., S., Cheng, A. L., and Li, X. J. (2000). Intranuclear huntingtin increases the expression of caspase-1 and induces apoptosis. Hum. Mol. Genet. 9:2859-2867.Google Scholar
  13. Marsh, J. L., Walker, H., Theisen, H., Zhu, Y. Z., Fielder, T., Purcell, J., and Thompson, L. M. (2000). Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9:13-25.Google Scholar
  14. Martin, F., Charro, M. J., and Alcorta, E. (2001). Mutations affecting the cAMP transduction pathway modify olfaction in Drosophila. J. Comp. Physiol. A. 187:359-370.Google Scholar
  15. Martindale, D., Hackam, A., Wieczorek, A., Ellerby, L., Wellington, C., McCutcheon, K., Singaraja, R, Kazemi-Esfaranji, P., Devon, R., Kim, S. U., Bredesen, B. E., Tufaro, F., and Hayden, M. R. (1998). Length of huntinting and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet. 18:150-154.Google Scholar
  16. Minosis, N., Khazaeli, A. A., and Curtsinger, J. W. (2001). Locomotor activity as a function of age and life span in Drosophila melanogaster overexpressing hsp70. Exp. Gerontol. 36:1137-1153.Google Scholar
  17. Moreau-Fauvarque, C., Taillebourg, E., Boissoneau, E., Mesnard, J., and Dura, J. M. (1998). eceptor tyrosine kinase gene linotte is required for neuronal pathway selection in the Drosophila mushroom bodie. Mech. Dev. 78:47-61.Google Scholar
  18. Moulder, K. L., Onodera, O., Burke, J. R., Strittmatter, W. J., and Johnson, E. M., Jr. (1999). Generation of neuronal intranuclear inclusions by polyglutamine-GFP: Analysis of inclusion clearance and toxicity as a function of polyglutamine length. J. Neurosci. 19:705-715.Google Scholar
  19. Paulson, H. L. (1999). Protein fate in neurodegenerative proteinopathies: Polyglutamine diseases join the (mis) fold. Am. J. Hum. Genet. 64:339-343.Google Scholar
  20. Paulson, H. L., Bonini, N. M., and Roth, K. A. (2000). Polyglutamine disease and neuronal cell death. Proc. Natl. Acad. Sci. U.S.A. 97:12957-12958.Google Scholar
  21. Paulson, H. L., Perez, M. K., Trottier, Y., Trojanowski, J. Q., Subramony, J. Q., Das, S. S., Vig, P., Mandel, J. L., Fischbeck, K. H., and Pittman, R. N. (1997). Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333-344.Google Scholar
  22. Robinow, S., and White, K. (1988). The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stage. Dev. Biol. 126:294-303.Google Scholar
  23. Rosenberg, R. N. (1992). Machado-Joseph disease: An autosomal dominant motor system degeneration. Mov. Disord. 7:193-203.Google Scholar
  24. Ross, C. A. (1997). Intra nuclear inclusions: A common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 10:1147-1150.Google Scholar
  25. Sanchez, I., Xu, C. J., Juo, P., Kakizaka, A., Blenis, J., and Yuan, J. (1999). Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623-633.Google Scholar
  26. Schmidt, T., Landwehrmeyer, G. B., Schmitt, I., Trottier, Y., Auburger, G., Laccone, F., Klockgether, T., Volpel, M., Epplen, J. T., Schols, L., and Riess, O. (1998). An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol. 8:669-679.Google Scholar
  27. Spradling, A. C., and Rubin, G. M. (1983). The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell 34:47-57.Google Scholar
  28. Turmaine, M., Raza, A., Mahal, A., Mangiarini, L., Bates, G. P., and Davies, S. W. (2000). Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. U.S.A. 97:8093-8097.Google Scholar
  29. Warrick, J. M., Chan, H. Y. E., Gray-Board, G. L., Chai, Y., Paulson, H. L., and Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular charperone HSP70. Nat. Genet. 23:425-428.Google Scholar
  30. Warrick, J. M., Paulson, H. L., Gray-Board, G. L., Bui, Q. T., Fischbeck, K. H., Pittman, R. N., and Bonini, N. M. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93:939-949.Google Scholar
  31. Yoshizawa, T., Yamagishi, Y., Koseki, N., Goto, J., Yoshida, H., Shibasaki, F., Shoji, S., and Kanazawa, I. (2000). Cell cycle arrest enhances the in vitro cellular toxicity of the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Hum. Mol. Genet. 9:69-78.Google Scholar
  32. Yoshizawa, T., Yoshidam H., and Shoji, S. (2001). Differentail susceptibility of cultured cell lines to aggregate formation and cell death produced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Brain Res. Bull. 56:349-352.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Yun-Taik Kim
    • 1
  • Sang Min Shin
    • 1
    • 2
  • Won Yong Lee
    • 3
  • Gyeong-Moon Kim
    • 3
  • Dong Kyu Jin
    • 4
  1. 1.Department of Life ScienceSogang UniversityMapo-gu, SeoulKorea
  2. 2.Clinical Research CenterSamsung Biomedical Research InstituteKangnam-gu, SeoulKorea
  3. 3.Department of NeurologySungkyunkwan University, School of Medicine, Samsung Medical CenterKangnam-gu, SeoulKorea
  4. 4.Department of PediatricsSungkyunkwan University, School of Medicine, Samsung Medical CenterKangnam-guKorea

Personalised recommendations