Skip to main content
Log in

Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The chemical shift anisotropies (CSAs) of cellulose Iα and Iβ, the two crystalline constituents of bacterial cellulose produced by Acetobacter xylinum (DSM 14666), and regenerated cellulose II are reported for each of the spectroscopically resolved carbon resonances using the phase adjusted spinning sideband (PASS) experiment. The data are compared with experimental results using the recoupling of anisotropy information (RAI) technique and with theoretical calculations of the structure of cellulose, including the hydrogen bonding systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alderman D.W., McGeorge G., Hu J.Z., Pugmire R.J. and Grant D.M. 1998. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values. Mol. Phys. 95(6): 1113-1126.

    Google Scholar 

  • Antzutkin O.N., Shekar S.C. and Levitt M.H. 1995. Two-dimensional sideband separation in magic-angle-spinning NMR. J. Magn. Reson. A 115: 7-19.

    Google Scholar 

  • Atalla R.H. and Gast J.C. 1980. 13C NMR spectra of cellulose polymorphs. J. Am. Chem. Soc. 102(9): 3249-3251.

    Google Scholar 

  • Atalla R.H. and VanderHart D.L. 1984. Native cellulose: a composite of two distinct crystalline forms. Science 223: 283-284.

    Google Scholar 

  • Bax A., Szeverenyi N.M. and Maciel G.E. 1983a. Correlation of isotropic shifts and chemical shift anisotropies by twodimensional Fourier-transform magic-angle hopping NMR spectroscopy. J. Magn. Reson. 52: 147-152.

    Google Scholar 

  • Bax A., Szeverenyi N.M. and Maciel G.E. 1983b. Chemical shift anisotropy in powdered solids studied by 2D FT NMR with flipping of the spinning axis. J. Magn. Reson. 55: 494-497.

    Google Scholar 

  • Dudley R.L., Fyfe C.A., Stephenson P.J., Deslandes Y., Hamer G.K. and Marchessault R.H. 1983. High-resolution 13C CP/ MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II. J. Am. Chem. Soc. 105(8): 2469-2472.

    Google Scholar 

  • Earl W.L. and VanderHart D.L. 1980. High resolution magic angle sample spinning 13C NMR of solid cellulose I. J. Am. Chem. Soc. 102: 3251-3252.

    Google Scholar 

  • Earl W.L. and VanderHart D.L. 1982. Measurement of 13C chemical shifts in solids. J. Magn. Reson. 48: 35-54.

    Google Scholar 

  • Erata T., Shikano T., Yunoki S. and Takai M. 1997. The complete assignment of the 13C CP/MAS NMR spectrum of native cellulose by using 13C labeled glucose. Cellulose Commun. 4: 128-131.

    Google Scholar 

  • Gagnaire D., Mancier D. and Vincendon M. 1980. Cellulose organic solutions: a nuclear magnetic resonance investigation. J. Polym. Sci. Polym. Chem. Ed. 18(1): 13-25.

    Google Scholar 

  • Gan Z. 1994. Spinning-sideband suppression using a pseudotwo-dimensional experiment. J. Magn. Reson. 109: 253-255.

    Google Scholar 

  • Gast J.C., Atalla R.H. and McKelvey R.D. 1980. The Carbon-13 NMR spectra of the xylo-and cellooligosaccharides. Carbohydr. Res. 84(1): 137-146.

    Google Scholar 

  • Herzfeld J. and Berger A.E. 1980. Sideband intensities in NMR spectra of samples spinning at the magic angle. J. Chem. Phys. 73(12): 6021-6030.

    Google Scholar 

  • Hesse St. 1998. NMR-Untersuchungen von Cellulosen und Biopolymeren. Diploma Thesis, IOQ/HF, FSU Jena, Germany.

    Google Scholar 

  • Horii F., Hirai A. and Kitamaru R. 1983. Solid-state 13C-NMR study of conformations of oligosaccharides and cellulose: conformation of CH2OH group about the exo-cyclic C–C bond. Polym. Bull. 10: 357-361.

    Google Scholar 

  • Hu J.Z., Wang W., Liu F., Solum M.S., Alderman D.W., Pugmire R.J. and Grant D.M. 1995. Magic-angle-turning experiments for measuring chemical-shift-tensor principal values in powdered solids. J. Magn. Reson. A 133: 210-222.

    Google Scholar 

  • Inoue Y. and Chujo R. 1978. The carbon-13 NMR spectra of (1 → 4)-linked β-D-gluco-oligosaccharides. Carbohydr. Res. 60(2): 367-370.

    Google Scholar 

  • Jaeger C., Pauli J. and Schmauder H.-P. 2004. Observation of the glycosidic bond and complete ring assignment of the carbons in uniformly 13C labeled bacterial cellulose. Macromolecules, submitted.

  • Koch F.-Th., Priess W., Witter R. and Sternberg U. 2000. Calculation of solid-state 13C NMR spectra of cellulose Iα, Iβ and II using a semi-empirical approach and molecular dynamics. Macromol. Chem. Phys. 201: 1930-1939.

    Google Scholar 

  • Kolpak F.J. and Blackwell J. 1976. Determination of the structure of cellulose II. Macromolecules 9: 273-278.

    Google Scholar 

  • Kono H., Yunoki S., Shikano T., Fujiwara M., Erata T. and Takai M. 2002. CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J. Am. Chem. Soc. 124: 7506-7511.

    Google Scholar 

  • Kono H., Erata T. and Takai M. 2003. Determination of the through-bond carbon–carbon and carbon–proton connectivities of the native celluloses in the solid state. Macromolecules 36: 5131-5138.

    Google Scholar 

  • Langan P., Nishiyama Y. and Chanzy H. 1999. A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J. Am. Chem. Soc. 121: 9940-9946.

    Google Scholar 

  • Lesage A., Bardet M. and Emsley L. 1999. Through-bond carbon–carbon connectivities in disordered solids by NMR. J. Am. Chem. Soc. 121: 10987-10993.

    Google Scholar 

  • Maciel G.E., Szeverenyi N.M. and Sardashti M. 1985. Chemical-shift-anisotropy powder patterns by the two-dimensional angle-flipping approach. Effects of crystallite packing. J. Magn. Reson. 64: 365-374.

    Google Scholar 

  • Mason J. 1993. Convention for the reporting of nuclear magnetic shielding (or shifts) tensors suggested by participants in the NATO ARW on NMR shielding constants at the University of Maryland, College Park, July 1992. Solid State Nucl. Magn. Res. 2: 285-288.

    Google Scholar 

  • Nishiyama Y., Langan P. and Chanzy H.J. 2002. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124: 9074-9082.

    Google Scholar 

  • Nishiyama Y., Sugiyama J., Chanzy H. and Langan P. 2003. Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125: 14300-14306.

    Google Scholar 

  • Raymond S., Kvick A. and Chanzy H. 1995. The structure of cellulose II: a revisit. Macromolecules 28: 8422-8425.

    Google Scholar 

  • Schramm M. and Hestrin S. 1954. Factors a.ecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11: 123-129.

    Google Scholar 

  • Sternberg U. and Möllho. M. 2001. Molecular mechanics with fluctuating atomic charges–a new force field with a semi-empirical charge calculation. J. Mol. Model. 7: 90-102.

    Google Scholar 

  • Sternberg U., Koch F.-Th., Priess W. and Witter R. 2003. Crystal structure refinements of cellulose polymorphs using solid-state 13C chemical shifts. Cellulose 10: 189-199.

    Google Scholar 

  • Sugiyama J., Persson J. and Chanzy H. 1991a. Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24: 2461-2466.

    Google Scholar 

  • Sugiyama J., Vuong R. and Chanzy H. 1991b. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24: 4168-4175.

    Google Scholar 

  • Szeverenyi N.M., Bax A. and Maciel G.E. 1985. Magic-angle hopping as an alternative to magic-angle spinning for solid state NMR. J. Magn. Reson. 61: 440-447.

    Google Scholar 

  • Tycko R., Dabbagh G. and Mirau P.A. 1989. Determination of chemical-shift-anisotropy lineshapes in a two-dimensional magic-angle-spinning NMR experiment. J. Magn. Reson. 85: 265-274.

    Google Scholar 

  • VanderHart D.L. and Atalla R.H. 1984. Studies of microstructure in native cellulose using solid-state 13C NMR. Macromolecules 17: 1465-1472.

    Google Scholar 

  • VanderHart D.L. and Atalla R.H. 1987. Further carbon-13 NMR evidence for the coexistence of two crystalline forms in native celluloses. In: Atalla R.H. (ed.), The Structures of Celluloses. ACS Symp. Ser., 340. American Chemical Society, Washington, DC, pp. 88-118.

    Google Scholar 

  • Wickholm K., Hult E.-L., Larsson P.T., Iversen T. and Lennholm H. 2001. Quantification of cellulose forms in complex cellulose materials: a chemometric model. Cellulose 8: 139-148.

    Google Scholar 

  • Witter R., Hesse St. and Sternberg U. 2003. New powder pattern recoupling at 10 kHz spinning speed applied to cellulose. J. Magn. Reson. 161: 35-42.

    Google Scholar 

  • Zollfrank C. 1999. Darstellung von Cellulose-II-Einkristallen und Untersuchung ihrer Kristallstruktur. Dissertation. HFM, TU München, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hesse, S., Jäger, C. Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II. Cellulose 12, 5–14 (2005). https://doi.org/10.1023/B:CELL.0000049407.56737.c7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELL.0000049407.56737.c7

Navigation