Skip to main content
Log in

New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Within the framework of our studies on enzyme-compatible support matrix structures, we succeeded in making further derivatives of the new aminocellulose type ‘P–CH2–NH–(X)–NH2’ (P = cellulose); (X) = –(CH2)2– (EDA), –(CH2)2–NH–(CH2)2– (DETA), –(CH2)3–NH–(CH2)3– (DPTA), –(CH2)2–NH–(CH2)2–NH–(CH2)2– (TETA) accessible by nucleophilic substitution reaction with ethylenediamine (EDA) and selected oligoamines starting from 6(2)-O-tosylcellulose tosylate (DStosylate = 0.8). The 13C-NMR data show that the EDA and oligoamine residues are at C6 of the anhydroglucose unit (AGU) and that OH and tosylate are also (partially) present at C6. OH and partially tosylate are at C2/C3. All the synthesized aminocellulose tosylates were soluble in water and formed transparent films from their solutions. The aminocellulose tosylate solutions and the films prepared from them formed blue-coloured chelate complexes with Cu2+ ions, whose absorption maxima at wavelengths in the VIS region were located similarly to those of the Cu2+ chelate complexes with EDA and with the oligoamines. AFM investigations have shown that the aminocellulose films, depending on structural and environment-induced factors influencing e.g. SiO2 polymer films, exhibit ‘flat’ topographies (<1 nm), and on protonated NH2 polymer films, such as aminopropyl-functionalized polysiloxane films, ‘nanostructured’ topographies of derivative-dependent shape and nanostructure size as film supports in the form of ‘nanotubes’. The aminocellulose films could be covalently coupled with glucose oxidase enzyme by various known and novel bifunctional reactions via NH2-reactive compounds. In this connection, it was confirmed again that the immobilized enzyme parameters, such as enzyme activity/area and K M value, can be changed by the interplay of aminocellulose film, coupling structure and enzyme protein in the sense of an application-relevant optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Icaza M., Kalisz H.M., Hecht H.J., Aumann K.-D., Schomburg D. and Schmid R.D. 1995. The design of enzyme sensors based on the enzyme structure. Biosens. Bioelectron. 10: 735-742.

    Google Scholar 

  • Barmin A.V., Eremenko A.V., Sokolovskij A.A., Chernov S.F. and Kurochkin I.N. 1993. New catalytic properties of glucose oxidase in monomolecular lms. Biotechnol. Appl. Biochem. 18: 369-376.

    Google Scholar 

  • Berlin P., Tiller J., Rieseler R. and Klemm D. 1998. Supra-molekulare Erkennungsstrukturen auf Cellulosebasis. Das Papier 52: 737-742.

    Google Scholar 

  • Berlin P., Klemm D., Tiller J. and Rieseler R. 2000. Feature–a novel soluble aminocellulose derivate type: its transparent lm-forming properties and its efficient coupling with enzyme proteins for biosensors. Macromol. Chem. Phys. 201: 2070-2082.

    Google Scholar 

  • Berlin P., Klemm D., Jung A., Liebegott H., Rieseler R. and Tiller J. 2003. Review–Film-forming aminocellulose derivatives as enzyme-compatible support matrices for biosensor developments. Cellulose 10: 343-367.

    Google Scholar 

  • Chibatu J. 1978. Preparation of Immobilized Enzymes and Microbial Cells. Main entry under title: Immobilized Enzymes, Research and Development. Kodanska Scientific Books, Tokyo, Japan and Halsted Press, New York.

    Google Scholar 

  • Comfort A.R., Albert E. and Langer R. 1989. Immobilized enzyme cellulose hollow fibers: immobilization of heparinase. Biotechnol. Bioeng. 34: 1366-1374.

    Google Scholar 

  • Daele J.V., Revol J.-F., Gaill F. and Coffinet G. 1992. Characterization of supramolecular architecture of the cellulose-protein in the tunic sea peach. J. Biol. Cell 76: 87-96.

    Google Scholar 

  • Gallati H. 1979. Horseradish-peroxidase–study of the kinetics and the determination of optimal reaction conditions, using hydrogen-peroxide and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS)as substrates. J. Clin. Chem. Clin. Biochem. 17: 1-7.

    Google Scholar 

  • Goldstein L. 1976. Kinetic behavior of immobilized enzyme systems.In: Mosbach K. (ed.), Immobilized Enzymes. Methods in Enzymology,Vol. 44. Academic Press, New York, pp. 397-443.

    Google Scholar 

  • Goncalves A.P.A., Martins M.B.F. and Cruz M.E.M. 1991. Analytical use of immobilized glucose oxidase–kinetic and operational studies. Appl.Biochem.Biotechnol. 27: 139-143.

    Google Scholar 

  • G00F6;pel W. 1994. New materials and transducers for chemical sensors. Sensors Actuators B18–19: 1-21.

    Google Scholar 

  • Gregg B.A. and Heller A.J. 1991. Redox-polymer films containing enzymes.2.Glucoseoxidase containing enzyme electrodes. J.Phys.Chem. 95: 5976-5980.

    Google Scholar 

  • Jung A., Berlin P. and Wolters B. 2004. Biomolecule-compatible support structures for biomolecule coupling to physical measuring principle surfaces. IEE Proc. Nanobiotechnol. 151: 87-94.

    Google Scholar 

  • Klei H.E., Sundstrom D.W. and Shim D. 1985. Immobilisation of enzymes by micro-encapsulation.In: Woodward J. (ed.), Immobilised Cells and Enzymes–A Practical Approach. IRL Press Ltd, Oxford,UK, pp. 49-54.

    Google Scholar 

  • Li J.-ru, Diu Y.-ke, Boullanger P. and Giang L. 1999. The folding and enzymatic activity of glucose oxidase in the glycolipid matrix of different charges. Thin Solid Films 352: 213-217.

    Google Scholar 

  • Mannhalter Ch. 1993. Biocompatibility of artificial surfaces such as cellulose and related materials. Sensors Actuators B11: 273-279.

    Google Scholar 

  • Mosbach K. 1988. Immobilized Enzymes and Cells. Methods in Enzymology, Vol. 137. Academic Press, San Diego,CA.

    Google Scholar 

  • Parzur J.H., Knull H.R. and Simpson L. 1970. Glycoenzymes: a note on the role for the carbohydrate moieties. Biochem. Biophys. Res. Commun. 40: 110-115.

    Google Scholar 

  • Rieseler R. 2001. Analyt-sensitive Nanostrukturschichten für die Biosensor-Entwicklung auf funktionalisierter Aminocellulosen und SiOx Polymerbasis. Dissertation Thesis, Forschungszentrum Juelich GmbH and RWTH Aachen, Germany.

    Google Scholar 

  • Sansubrino A. and Mascini M. 1994. Development of an optical fiber sensor for ammonia, urease and IgG. Biosens. Bioelectron. 9: 207-216.

    Google Scholar 

  • Sternberg Bindra D.S., Wilson G.S. and Thevenot D.R. 1988. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal. Chem. 60: 2781-2788.

    Google Scholar 

  • Tiller J. 1999. Maßgeschneiderte Aminocellulosederivate zum Aufbau supramolekularer Cellulose-Architekturen mit Analyt-Erkennungsfunktion und optischer Signalgruppe. Dissertation Thesis, Friedrich-Schiller-Universität Jena/Forschungszentrum Jülich, Germany.

    Google Scholar 

  • Tiller J., Berlin P. and Klemm D. 1999a. Soluble and lmforming cellulose derivates with redoxchromogenic and enzyme immobilizing 1,4-phenylendiamine groups. Macromol. Chem. Phys. 200: 1-9.

    Google Scholar 

  • Tiller J., Berlin P. and Klemm D. 1999b. Novel efficient enzyme immobilization on NH2 polymers by means of L-ascorbic acid. Biotechnol. Appl. Biochem. 30(2): 155-162.

    Google Scholar 

  • Tiller J., Berlin P. and Klemm D. 2000. Novel matrices for biosensor applications by structural design of redox-chromogenic aminocellulose esters. J. Appl. Polymer Sci. 75: 904-915.

    Google Scholar 

  • Tiller J., Klemm D. and Berlin P. 2001. Designed aliphatic aminocellulose derivatives as transparent and functionalized coatings for enzyme immobilization. Des. Monomers Polym. 4: 315-328.

    Google Scholar 

  • Tiller J., Rieseler R., Berlin P. and Klemm D. 2002. Stabilization of activity of oxidoreductases by their immobilization onto special functionalized glass and novel aminocellulose film using different coupling reagents. Biomacromolecules 3: 1021-1029.

    Google Scholar 

  • Vegarnd G. and Christensen T.B. 1975. Glycosylation of proteins–new method of enzyme stabilization. Biotechnol. Bioeng. 17: 1391-1397.

    Google Scholar 

  • Weigl B.H., Holobar A., Rodriges N.V. and Wolfbeis O. 1993. Robust carbon dioxide optrode based on covalently immobilized pH indicator. Proc. SPIE 2068: 22.

    Google Scholar 

  • Woodward J. 1985. Immobilised enzymes: adsorption and covalent coupling.In: Woodward J. (ed.), Immobilised Cells and Enzymes–A Practical Approach. IRL Press Ltd, Oxford, UK, pp. 3-17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, A., Berlin, P. New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12, 67–84 (2005). https://doi.org/10.1023/B:CELL.0000049351.44348.30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELL.0000049351.44348.30

Navigation