Skip to main content
Log in

Structure and morphology of cellulose in wheat straw

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The structure and morphology of cellulose extracted from wheat were studied. It was found that the extraction process is effective and hemicelluloses and lignin can be extracted completely. Cellulose in wheat straw was identified as cellulose I allomorph with low crystallinity and the crystallinity of cellulose from different parts of the wheat straw has little difference. There was no metastable cellulose Iα crystalline modification found in wheat straw; only the more stable cellulose Iβ crystalline modification existed. Cellulose chains in the epidermis of wheat straw were observed with their orientation along the growth direction of wheat straw, while those in parenchyma were observed with almost no preferred orientation. There are two kinds of morphologies on the surface of wheat straw. One is the fiber structure with fibrils of about 5 μm diameter, and the other is the fiber structure with serration morphology at the edge of the fiber, with which the fibers are connected together. The diameter of the latter one is about 10 μm. The vascular bundles consist of circular rings while spiral structure cellulose backbones covered with thin cellulose film were also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal U.P. and Atalla R.H. 1986. In situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.). B.S.P. Planta 169: 325-332.

    Google Scholar 

  • Alexander L.E. 1969. X-ray Diffraction Method in Polymer Science. Wiley/Interscience, New York, pp. 137-197.

    Google Scholar 

  • Angles M.N. and Dufresne A. 2000. Plasticized starch/tunicin whiskers nanocomposites. 1. Struct. Anal. Macromol. 33: 8344-8353.

    Google Scholar 

  • Angles M.N. and Dufresne A. 2001. Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mech. Behav. Macromol. 34: 2921-2931.

    Google Scholar 

  • Atalla R.H., Agarwal U.P. and Bond J.S. 1992. Raman spectroscopy. In: Lin S.Y. and Dence C.W. (eds.), Lignin Chemistry. Springer-Verlag, Berlin, Germany, pp. 162-176.

    Google Scholar 

  • Atalla R.H. and VanderHart D.L. 1984. Native cellulose. A composite of two distinct crystalline forms. Science 223: 283-285.

    Google Scholar 

  • Avella M., Martuscelli E., Pascucci B., Raimo M., Focher B. and Marzetti A. 1993. A new class of biodegradable materials –, poly-3-hydroxy-butyrate steam exploded straw fiber composites. 1. Thermal and impact behavior. J. Appl. Polym. Sci. 49: 2091-2103.

    Google Scholar 

  • Avella M., Rota G.L., Martuscelli E., Raimo M., Sadocco P., Elegir G. and Riva R. 2000. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wheat straw fibre composites: thermal, mechanical properties and biodegradation behaviour. J. Mater. Sci. 35: 829-836.

    Google Scholar 

  • Bellamy L.J. 1954. The Infra-red Spectra of Complex Molecules. John Wiley & Sons Inc., New York, pp. 83-98.

    Google Scholar 

  • Chanzy H., Imada K. and Vuong R. 1978. Electron diffraction from primary wall of cotton fibers. Protoplasma 94: 299-306.

    Google Scholar 

  • Chen L.M., Wilson R.H. and McCann M.C. 1997. Investigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy. J. Mol. Struct. 408: 257-260.

    Google Scholar 

  • Dubief D., Samain E. and Dufresne A. 1999. Polysaccharide microcrystals reinforced amorphous poly (beta-hydroxyoctanoate) nanocomposite materials. Macromolecules 32: 5765-5771.

    Google Scholar 

  • Dufresne A., Cavaille J.Y. and Helbert W. 1997. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. 2. Effect of processing and modeling. Polym. Compos. 18: 198-210.

    Google Scholar 

  • Dufresne A., Dupeyre D. and Vignon M.R. 2000. Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J. Appl. Polym. Sci. 76: 2080-2092.

    Google Scholar 

  • Dufresne A., Kellerhals M.B. and Witholt B. 1999. Transcrystallization in Mcl-PHAs/cellulose whiskers composites. Macromolecules 32: 7396-7401.

    Google Scholar 

  • Dufresne A. and Vignon M.R. 1998. Improvement of starch film performances using cellulose microfibrils. Macromolecules 31: 2693-2696.

    Google Scholar 

  • Focher B., Palma M.T., Canetti M., Torri G., Cosentino C. and Gastaldi G. 2001. Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind. Crops. Prod. 13: 193-208.

    Google Scholar 

  • Gastaldi G., Capretti G., Focher B. and Cosentino C. 1998. Characterization and properties of cellulose isolated from the Crambe abyssinica hull. Ind. Crops. Prod. 8: 205-218.

    Google Scholar 

  • Gilbert C., Kokot S. and Mayer S. 1993. Application of DRIFT spectroscopy and chemometrics for the comparison of cotton fabrics. Appl. Spectrosc. 47: 741-748.

    Google Scholar 

  • Gould J.M. 1989. Alkaline peroxide treatment of agricultural byproducts. US Patent 4806475.

  • Gustafsson J., Ciovica L. and Peltonen J. 2003. The ultrastructure of spruce kraft pulps studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Polymer 44: 661-670.

    Google Scholar 

  • Helbert W., Cavaille J.Y. and Dufresne A. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. 1. Processing and mechanical behavior. Polym. Compos. 17: 604-611.

    Google Scholar 

  • Helbert W., Sugiyama J., Ishihara M. and Yamanaka S. 1997. Characterization of native crystalline cellulose in the cell walls of Oomycota. J. Biotechnol. 57: 29-37.

    Google Scholar 

  • Horii F., Yamamoto H., Kitamaru R., Tanahashi M. and Higuchi T. 1987. Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 20: 2946-2949.

    Google Scholar 

  • Hornsby P.R., Hinrichsen E. and Tarverdi K. 1997a. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. 1. Fibre characterization. J. Mater. Sci. 32: 443-449.

    Google Scholar 

  • Hornsby P.R., Hinrichsen E. and Tarverdi K. 1997b. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. 2. Analysis of composite microstructure and mechanical properties. J. Mater. Sci. 32: 1009-1015.

    Google Scholar 

  • Lawther J.M., Sun R.C. and Banks W.B. 1996. Fractional characterization of alkali-labile lignin and alkali-insoluble lignin from wheat straw. Ind. Crops. Prod. 5: 291-300.

    Google Scholar 

  • Mathew A.P. and Dufresne A. 2002. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3: 609-617.

    Google Scholar 

  • Michell A.J. 1990. Second-derivative FT-IR spectra of native celluloses. Carbohydr. Res. 197: 53-60.

    Google Scholar 

  • Patil Y.P., Gajre B., Dusane D., Chavan S. and Mishra S. 2000. Effect of maleic anhydride treatment on steam and water absorption of wood polymer composites prepared from wheat straw, cane bagasse, and teak wood sawdust using novolac as matrix. J. Appl. Polym. Sci. 77: 2963-2967.

    Google Scholar 

  • Revol J.F. 1982. On the cross-sectional shape of cellulose crystallites in Valonia ventricosa. Carbohyd. Polym. 2: 123-134.

    Google Scholar 

  • Stewart D., Wilson H.M., Hendra P.J. and Morrison I.M. 1995. Fourier-transform infrared and Raman-spectroscopic study of biochemical and chemical treatments of oak wood (Quercus rubra) and Barley (Hordeum vulgare) Straw. J. Agr. Food Chem. 43: 2219-2225.

    Google Scholar 

  • Sugiyama J., Persson J. and Chanzy H. 1991a. Combined infrared and electron diffraction study of the polymorphism of native cellulose. Macromolecules 24: 2461-2466.

    Google Scholar 

  • Sugiyama J., Vuong R. and Chanzy H. 1991b. Electron diffraction study on the two crystalline phases occurring in native cellulose from algal cell wall. Macromolecules 24: 4168-4175.

    Google Scholar 

  • Sun R.C., Fang J.M., Rowlands P. and Bolton J. 1998. Physicochemical and thermal characterization of wheat straw hemicelluloses and cellulose. J. Agr. Food Chem. 46: 2804-2809.

    Google Scholar 

  • Sun R.C., Fang J.M. and Tomkinson J. 2000. Delignification of rye straw using hydrogen peroxide. Ind. Crops. Prod. 12: 71-83.

    Google Scholar 

  • VanderHart D.L. and Atalla R.H. 1984. Studies of microstructure in native celluloses using solid-state C-13 NMR. Macromolecules 17: 1465-1472.

    Google Scholar 

  • VanderHart D.L. and Atalla R.H. 1987. Further 13C NMR evidence for the co-existence of two crystalline forms in native celluloses. ACS Symp. Ser. 340: 88-118.

    Google Scholar 

  • Wada M., Sugiyama J. and Okano T. 1994. The monoclinic phase is dominant in wood cellulose. Mokuzai Gakkaishi 40: 50-56.

    Google Scholar 

  • Yamamoto H. and Horii F. 1993. CP MAS C-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26: 1313-1317.

    Google Scholar 

  • Yamamoto H., Horii F. and Odani H. 1989. Structural changes of native cellulose crystals induced by annealing in aqueous alkaline and acidic solutions at high temperatures. Macromolecules 22: 4130-4132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, R., Yu, H. & Huang, Y. Structure and morphology of cellulose in wheat straw. Cellulose 12, 25–34 (2005). https://doi.org/10.1023/B:CELL.0000049346.28276.95

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELL.0000049346.28276.95

Navigation