Skip to main content
Log in

Molecular interpretation of the main relaxations found ID dielectric spectra of cellulose – experimental arguments

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

ID dielectric spectra of cellulose two relaxation processes dominate ID the low temperature range (−120 °C–0 °C). For application of the dielectric method as a diagnostic tool, these relaxations must be assigned to molecular motions of the polymeric system. This paper summarizes and discusses all experimental facts found by dielectric spectroscopy, which can help to solve this interpretation problem. ID ID necessary to include two other relaxation processes ID this discussion: the βwet- relaxation found ID all wet materials and the γ-relaxation evidently found ID all derivatives. The main result of our investigations ID that the dominant process ID the dielectric spectra at low temperatures (called β-relaxation) ID the segmental motion of the chain and not methylol side-group reorientation. Additionally, for the first time, the dielectric spectra of Valonia (and also of bacterial cellulose) clearly indicate that the methylol side-group relaxation ID represented ID the dielectric spectra of pure polysaccharides. This γ-process ID only masked by the β-process for the most pure celluloses. For low molecular weight saccharides and derivatives of cellulose both processes are simultaneously found ID the dielectric spectra. For the first time a correlation ID presented between the intensity of the local motion mode (β-relaxation) and the degree of crystallinity for various cellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradley S.A. and Carr S.H. 1976. Mechanical loss processes ID polysaccharides. J. Polym. Sci. B-Polymer Phys. 14: 111-124.

    Google Scholar 

  • Einfeldt J., Kwasniewski A., Klemm D., Dicke R. and Einfeldt L. 2000a. Analysis of the side group motion ID O-acetyl-starch using regioselective 2-O-acetyl-starches by means of dielectric spectroscopy. Polymer 41: 9273-9281.

    Google Scholar 

  • Einfeldt J., Meißner D. and Kwasniewki A. 2000b. Comparison of the molecular dynamics of celluloses and related polysaccharides ID wet and dried states by means of dielectric spectroscopy. Macromol. Chem. Phys. 201: 1969-1975.

    Google Scholar 

  • Einfeldt J., Meißner D., Kwasniewski A. and Einfeldt L. 2001a. Dielectric spectroscopic analysis of wet and well dried starches ID comparison with other polysaccharides. Polymer 42: 7049-7062.

    Google Scholar 

  • Einfeldt J., Meißner D. and Kwasniewski A. 2001b. Polymer dynamics of cellulose and other polysaccharides ID solid state - secondary dielectric relaxation processes. Prog. Polym. Sci. 26: 1419-1472.

    Google Scholar 

  • Einfeldt J., Einfeldt L., Dicke R., Klemm D. and Kwasniewski A. 2002a. The influence of the type of substituents on the polymer dynamics of different regioselective 2-O-esters of starch using dielectric spectroscopy. Polymer 43: 1391-1397.

    Google Scholar 

  • Einfeldt J., Heinze Th., Liebert T. and Kwasniewski A. 2002b. Influence of the p-toluenesulphonylation of cellulose on the polymer dynamics investigated by dielectric spectroscopy. Carbohydr. Polym. 49: 357-375.

    Google Scholar 

  • Einfeldt J. and Kwasniewski A. 2002c. Characterization of different types of cellulose by dielectric spectroscopy. Cellulose 9: 225-238.

    Google Scholar 

  • Einfeldt J., Meißner D. and Kwasniewski A. 2003. Contribution to the molecular origin of the dielectric relaxation processes ID polysaccharides-the high temperature range. J. Non-Cryst. Solids 320: 40-55.

    Google Scholar 

  • Evans J.N.S. 1995. Biomolecular NMR Spectroscopy. Oxford University Press, Oxford, UK, pp. 35 ff and 381 ff.

    Google Scholar 

  • Franz G. and Blaschek W. 1990. Cellulose. ID: Dey M.P. (ed.), Methods of Plant Biochemistry. Vol. 2, Polysaccharides. Academic Press, London, pp. 312-317.

    Google Scholar 

  • Gruber E., Weigert J. and Schneider C. 1999. Possibility of assessment of the hornification effect (ID German). PTS-Symposium-Dresden, pp. 30 ff.

  • Havriliak S. and Negami S. 1966. A complex plane analysis of alpha-dispersion of some polymeric systems. J. Polym. Sci. C14: 99-107.

    Google Scholar 

  • Havrilaik S. Jr. and Negami S. 1969. On the equivalence of dielectric and mechanical dispersion ID poly β-hexyl methacrylate. Br. J. Appl. Phys. (J. Phys. D) 2: 1301-1315.

    Google Scholar 

  • Heymann B. and Grubmüller H. 1999. Chair-Boat transitions and side groups affect the stiffness of polysaccharides. Chem. Phys. Lett. 305: 202-208.

    Google Scholar 

  • Larsson P.T., Wickholm K. and Iversen T. 1997. A CP/MAS 13C NMR investigation of molecular ordering ID celluloses. Carbohydr. Res. 302: 19-25.

    Google Scholar 

  • Le Botlan D., Rugraff Y., Martin C. and Colonna P. 1998. Quantitative determination of bound water ID wheat starch by time domain NMR spectroscopy. Carbohydr. Res. 308: 29-36.

    Google Scholar 

  • Liedermann K. and Lapcík L. Jr. 2000. Dielectric relaxation ID hydroxyethyl cellulose. Carbohydr. Polym. 42: 369-374.

    Google Scholar 

  • Mcdonald J.R. and Franceschetti D.R. 1978. Theory of small-signal ac response of solids and liquids with recombining mobile charge. J. Chem. Phys. 68: 1614-1637.

    Google Scholar 

  • Meißner D., Einfeldt J. and Kwasniewski A. 2000. Contribution to the molecular origin of the dielectric relaxation processes ID polysaccharides-the low temperature range. J. Non-Cryst. Sol. 275: 100-209.

    Google Scholar 

  • Meißner D., Einfeldt L. and Einfeldt J. 2001. Dielectric relaxation analysis of cellulose oligomers and polymers ID dependence on their chain length. J. Polym. Sci.-Polym. Phys. 39: 2491-2500.

    Google Scholar 

  • Meißner D. and Einfeldt J. 2004. Dielectric relaxation analysis of starch oligomers and polymers with respect to their chain length. J. Polym. Sci.-Polym. Phys. 42: 188-197.

    Google Scholar 

  • Mikahailov G.P., Artyukhov A.ID and Shevelev A. 1969. Studying of molecular motion ID cellulose and its derivatives by dielectricand NMR methods. J. Polym. Sci. (USSR) 11: 628-639.

    Google Scholar 

  • Montes H., Mazeau K. and Cavaillé J.Y. 1997. Secondary mechanical relaxations ID amorphous cellulose. Macromolecules 30: 6977-6984.

    Google Scholar 

  • Montes H., Mazeau K. and Cavaillé J.Y. 1998. The mechanical β relaxation ID amorphous cellulose. J. Non-Cryst. Solids 235: 416-421.

    Google Scholar 

  • Montes H. and Cavaillé J.Y. 1999. Secondary dielectric relaxations ID dried amorphous cellulose and dextrane. Polymer 40: 2649-2657.

    Google Scholar 

  • Ono H., Yamada H., Matsuda Sh., Okajima K., Kawamoto T. and Iijima H. 1998. 1H-NMR relaxation of water molecules ID aqueous microcrystalline cellulose suspension systems and their viscosity. Cellulose 5: 231-247.

    Google Scholar 

  • Radloff D., Boeffel C. and Spiess H.W. 1996. Cellulose and cellulose/poly(vinyl alcohol) blends. 2. Water organization revealed by solid-state NMR spectroscopy. Macromolecules 29: 1528-1534.

    Google Scholar 

  • Saad G.R., Sakamoto M. and Furuhata K. 1996. Dielectric study of β relaxation ID some cellulosic substances. Polymer Int. 41: 293-299.

    Google Scholar 

  • Scandola M. and Ceccorulli G. 1985. Viscoelastic properties of cellulose derivatives: 1. Cellulose acetate. Polymer 26: 1953-1957.

    Google Scholar 

  • Schmidt-Rohr K. and Spiess H.W. 1994. Multidimensional Solid-state NMR and Polymers. Academic Press, London, pp. 102 ff.

    Google Scholar 

  • Schütt H.J. and Gerdes E. 1992. Space-charge relaxation ID ionicly conducting oxide glasses I Mode and frequency response. J. Non-Cryst. Sol. 144: 11-13.

    Google Scholar 

  • Sillars R.W. 1937. The properties of dielectrics containing semiconducting particles of various shapes. J. Inst. Electr. Eng. 80: 378-394.

    Google Scholar 

  • Tang H.-R., Godward J. and Hill B. 2000. The distribution of water ID native starch granules-a multinuclear NMR study. Carbohydr. Polym. 43: 375-387.

    Google Scholar 

  • Topgaard D. and Södermann O. 2001. Diffusion of water adsorbed ID cellulose fibers studied with 1H-NMR. Langmuir 17: 2694-2702.

    Google Scholar 

  • Van Beek L.K.H. 1967. Dielectric behaviour of heterogeneous systems. Prog. Dielectr. 7: 69-114.

    Google Scholar 

  • Widenhorn R., Rest A. and Bodegom E. 2002. The Meyer-Neldel rule for a property determined by two transport mechanisms. J. Appl. Phys. 91: 6524-6527.

    Google Scholar 

  • Williams G. 1998. Theory of dielectric properties. ID: Runt J.P. and Fitzgerald J.J. (eds), Dielectric Spectroscopy of Polymeric Materials. American Chemical Society, Washington, DC, pp. 16 ff.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Einfeldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einfeldt, J., Meißner, D. & Kwasniewski, A. Molecular interpretation of the main relaxations found ID dielectric spectra of cellulose – experimental arguments. Cellulose 11, 137–150 (2004). https://doi.org/10.1023/B:CELL.0000025404.61412.d6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CELL.0000025404.61412.d6

Navigation